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Classical conic section theory

1. The conic sections and their teachings occupy a very special place in the
development of geometry in general. They form p̊ a way the bridge from the very
elementary geometry to the higher one. T̊his is already evident in the fact that
conic sections are a general concept, appearing in̊ different w a y s  in various
forms, and as such c a n  ̊only be perceived as uniform in purely ideal terms. They thus
lift themselves out of the purely sensuous constructive geometry towards ̊ grasping
something ideal in things.

2. There is something peculiar already in the way  ̊conic sections were conceived
from the very beginning, b o t h  ̊ in the images we use and in the naming. Cone
section means section of a cone, and if we regard the cone as uniform, then̊ the
cone sections are ̊created by dividing it up in̊ different . We also see  ̊a in the image
a direct variant of Plato's cave equation. The conic sections in their multiplicity
are shadows of something unified that connects them in an idea. We are also
tempted a˚̊ a g̊ a to Kepler and how he imagines the relationship between God and
creation. He sees the sphere as an image of God, while he sees the circle as the
creature, which is formed as an intersection between the sphere and a plane. The circle
is the original image of the conic sections, so̊ to speak, so that the conic sections
are to an even greater extent an image of̊ the manifold created.

3. This diversity is shown to an even greater degree by the fact that the conic
section  ̊ en te r s  into innumerable relationships with other elements, these may be
elements that come ̊ from outside, such as tangents and chords, or they may be
elements that seem ̊ to belong to the conic sections, such as axes, diameters and
focal points. These relations, properties and laws are the material for the
morphological investigations that follow, and because they are more or less known
today, we will go  ̊through the basic relations and properties that apply.

4. Most of these relations as they exist from the classical conic section theory are
geometric-metric relations, but as we have seen earlier, we can form incidence
relations of these by combinatorial operations. In this review we will not make
these transformations, we will see this on̊ a as we encounter̊ a things in the morphology
itself.
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Figure 12: The ellipse as an image of the sphere

The discovery of conic sections

5. Knowledge of the conic section equations can be traced back to the problem of 
the doubling of the cube, one of those remarkable Delphic problems that 
contributed so̊ much to the development of mathematics.2 Here the task is ̊ to 
construct a cubic altar that has twice the volume of another cubic altar. This proved ̊
to be problematic with a compass and ruler, because it involves
t̊o construct a line segment that is 3 2 larger than another, which has only 
recently  ̊been shown to be impossible.

6. The Greek Menaechmus is  ̊ creditedwith ̊ having discovered that conic 
sections can be used for this purpose, and he gives two solutions of the problem 
using them. In one case he uses two parabolas, in the other case a parabola 
and a hyperbola. He makes use of the numerical relationships associated with 
these curves, and by ̊solving equations with two unknowns he finds the desired 
quantity.

7. From quotes,  ̊ it is also  ̊ clear that he knows that these curves are formed from 
sections with a cone. The different cone sections appear as different results of a 
plane that cuts across a cone. If we cut across so that we get  ̊a finite section, we get 
the ellipse, if we cut so that the plane is parallel to an edge of the cone we get  ̊ the 
parabola, and if we cut so that the plane is not parallel, but not finite either, we 
get  ̊ the hyperbola. We can see how these appear in̊ Figure 14. Thus, the two 
aspects of the conic sections emerge from the very beginning, on̊ the one hand the 
purely geometric, and on̊ the other hand the algebraic conditions associated with 
them.

2The other two problems: T̊o divide an angle with a compass and ruler alone; ̊To construct 
a line segment that is as long as the circumference of a circle n  ̊ a r  we know the diameter.
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Figure 13: Doubling the cube

Figure 14: Section of a cone
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Figure 15: Apollonius surveys

8. In the further study of conic sections, a whole series of mathematicians in
ancient times participated; Euclid, Archimedes, Pappos and above all
Appolonius. This is not the place to ̊ a give an exact account of how all the
results are obtained; we give a sketch and show some features of the m  ̊ a t e n  ̊a work
p  ̊ a .  The main point here is ̊ to  ̊ bring out different aspects with a view to̊ later
processing.

9. For ̊a f̊ a certain understanding  ̊of this path, we can see how the lining for the
parabola emerges from consideration of the knit with a cone.

The equations for the conic sections
10. The conic sections are obtained by  ̊a p̊ a simplest m  ̊ a t e  cutting across a cone with
a plane. Appolonius considered these sections, and he shows how the equations for
the different variants are obtained from this. We shall not go̊ a through this
method systematically, but in order for us to have some feeling for the starting
point of it all, we will see p̊ a how the parabolic equation is obtained in the
simplest case.

The equation of the parabola is given by y= a x2.

Description: We start with a cone which, seen from the side, forms an 
equilateral triangle, and we begin the section with the unit from the top as we see in̊ 
a figure ??. I f  ̊ h e  parabola is created by a plane cutting parallel to a side, this 
means that the axis of the parabola is always equidistant from the cone.
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Figure 16: Equation for parabola from section

this page. We then̊ a make an intersection normally on̊ a the axis of the cone; these 
intersections become circles, and by ̊ a following how the circle changes in 
relation to the conditions on̊ a the parabola, the parabola equation emerges. The details 
of this are left to the reader.

P̊ aligning with  ̊ a t e ,  we can get ̊a the equations for the hyperbola and the ellipse 
by ̊a looking at p̊ a the other sections. However, we need to see p̊ a other properties 
of these equations to ̊a f̊ a obtain the equations for them.
11. The ellipse appears simplest w h e n  ̊we look at̊ it as a circle in perspective, and 
this also  ̊gives the equation p̊ a simple m  ̊ a te .  The simplest representation of this is 
when a circle s̊ a and si are pressed together. All the heights in the circle will then be 
reduced by the same amount, and based on this, the equation for the ellipse is given 
by the equation for the circle.

Equation 15. The equation of an ellipse with center at the origin, and with the 
coordinate axes as axes is given by

x2 y2

a2+
 b(2) 1= (2)

Proof: We consider this in relation to the circular equation x2+  y(2)= r2, and the 
equations are obtained.
12. An ellipse thus has two symmetry axes and a center. The same applies to the 
hyperbola, but this does not appear directly as a compressed circle. Another relationship 
gives an equation for the hyperbola, which initially looks quite different from the ellipse 
equation. The equation is then given by

a
y =

x



26

Figure 17: enveloped parabola

. This can also ̊ be described as being the curve that gives the same area.

13. The equation above can be transferred to the same type as the ellipse by ̊  
rotating the coordinate axes. We then replace x and y in the product equation by ̊  
inserting x+ y and x− y. This produces the hyperbola equation

x2 y2

a2− b2= 1

where a is the real axis and b is the imaginary axis.

14. The general equation for all conic sections is given by the equation

a x2+ b y2+ c xy+ d' x+ e y+ f== 0 We see 

n̊ a p̊ a more specific conditions.

Diameters and centers
15. Central elements in conic section theory are the center and diameters of conic
sections, and many properties are associated with these. W  ̊ h e n  the center is
given, the diameters of lines through this center are limited by the conic section.
If the conic section is given at the periphery, however, the diameter is determined
first, and the center is determined as the intersection of the diameters. This is because
the diameters are obtained bẙ a simple m  ̊ate ,  linked to a central law. If we draw a
number of
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Figure 18: Conjugate diameters and axes

parallel lines across a conic section and halves the resulting chords,  turns out that all 
the bisecting points lie on ̊the same line. This line is a diameter of the conic section.

theorem 16: Given a conic section, and a number of parallel lines cutting across it. 
The points of intersection of the chords will then lie on t̊he same line. We call this 
line a diameter of the conic section.

16. It also turns out that all the diameters formed bẙ  this measurement ̊meet at the same
point.

Theorem 17: All the diameters of a conic section meet at the same point, which we 
call the center of the conic section.

Given a conic section at its periphery, we can use these properties to construct 
the diameters and center of a conic section.

17. Based on a number of parallel lines, we find  ̊a diameter. Noẘ a there are lines
among the parallel ones that stand out. One of these is the line that also  ̊ a g  ̊passes
through the center of the conic section, and this is called the conjugate diameter of
the one found.

18. The other lines that stand out among the parallel ones are the tangents to the
conic section. A diameter is thus a conjugate diameter of another n  ̊ a r  it g  ̊ a r
through the points that parallel tangents form with the conic section.

19. Among the diameters, there are two that stand out, the longest and the shortest
diameters. These are called the axes of the conic section, and we will here
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Figure 19: Hyperbola and asymptotes

call these the long axis and the short axis. We can find these by ̊a sl  ̊a circle around 
the center of the ellipse, and where it intersects this, we halve, and we f  ̊ a r  the 
axes. The conic sections are symmetrical about the axes.

The hyperbola and its asymptotes
20. Something peculiar is associated with the hyperbola that we do not find for 
the other conic sections, namely its asymptotes. We have already seen these on  ̊
a ,  and they exist as two special diameters, and they are also  ̊a conjugate to each 
other.

Theorem 18 Given two lines. We find points so that the product of the distances 
from the point to the asymptotes parallel to the other asymptotes is constant. Then 
the points will form a hyperbola.

focal point
21. In addition to the center, there are two central points linked to the cone 
sections, which in many contexts are of great ̊ importance. These are the focal 
points of the conic sections. The phenomena that involve focal points are also  ̊a 
diverse, and they have a different character than those we have seen so̊ far. This 
distinction can be characterized by the fact that the first phenomena involve 
parallel lines in̊ one way  or another,  while the phenomena associated with focal 
points  ̊involve the circle.
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Figure 20: Properties of the ellipse

22. The most immediate way ̊ i n w h i c h the focal points show themselves on ̊a is 
through the laws of addition.

theorem 19: The addition theorem
Given an ellipse and the two focal points. Then the sum of the distances from a 
point p ̊a on the ellipse to the two focal points is constant, and the sum is equal to 
the major axis of the ellipse.

23. This relationship can be used to define ̊an ellipse, and in terms of construction
we  ̊make the ellipse ̊appear by ̊starting with two focal points, and finding points as
indicated above.
24. The above definition only applies to the ellis, for the other conic sections,
something applies that is actually a modification, but which behaves quite differently.
The hy- perbola appears as  ̊a constant difference.

Theorem 20 Given a a hyperbola and the two focal points. Then the difference of 
the distances from a point p̊ a a hyperbola to the two focal points is constant, and 
the sum is equal to the transverse axis of the hyperbola.

As for the ellipse, we can make̊ a the hyperbola of ̊a appear from this sentence.

Focal point and guidance line
25. N  ̊hen it comes to the parabola, something else special occurs. It has only
one focal point, and we can regard it as an elongated ellipse where one
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Figure 21: Ellipses and hyperbolas from cosntant sum and difference

focal point has g  ̊ a t t  to infinity. This means that sentences relating to two 
focal points do not apply to the parabola, but we do have a law that we will later 
show is  ̊ directly related to the two above. Our starting point is the focal point 
and a specific line, the so-cal led  c̊ontrol line of the parabola.

Theorem 21 Given a parabola, the focal point and the directrix. For all points p o̊f 
the parabola, the distance to the directrix will be the same as the distance to the 
focal point.

26. We can also å use this theorem as a definition, and to å construct a parabola p 
å a simple m å t e . It is relatively easy  ̊to find the parabola equation from this context.
27. The guidance line is not only linked to the parabola, it is also l̊inked to the 
ellipse and hyperbola. For each of these, a guidance line is linked to each focal 
point. But in reality, it is not a question of four elements at ̊ a time, but either two 
focal points, or one focal point and the associated control line. The latter is linked to 
a central law that applies to all cone intersections.

theorem 22 The relationship theorem
Given a conic section, a focal point and the associated guidance line. From each 
point p ̊of the conic section, the ratio between the distances to the focal point and the 
guidance line is constant.

28. Also  ̊a this statement is used as a definition of ̊ a conic section. From this, conic 
sections can be constructed, and it is relatively easy ̊ to see the transition to the 
addition and difference theorems. By ̊ varying the constant, the different conic 
sections emerge; i f ̊  it is smaller than one we have an ellipse, if it is larger
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than one, we have the hyperbola, and if it is equal to one, we have the parabola. We 
see that the parabola theorem above appears.

Envelope curves
29. So ̊far we have looked at ̊a point occurrences of the conic sections linked to the 
focal points, but we have also  ̊ a relationships where tangents are involved. 
While in  t̊he case of points we have to do with lengths ,̊ here we  to do with 
the creation of angles. A central theorem, which also  å gives all the conic sections, is 
the following:

Theorem 23: Given a conic section, a focal point to this, and a circle co-centric 
with this, and diameter equal to the major axis. We draw a line through the focal 
point, and where this intersects the circle we draw a normal. This will then be 
tangent to the conic section.

30. By s̊tarting with a circle and a point, we can use this law to construct the conic 
sections. We then draw lines through the point, and where these intersect the circle, 
we erect normals. All the normals will then enclose a conic section, as shown in 
Figure 22.
31. By v̊arying the circle f ˚we obtain a number of conic sections. If we start 
with the point inside the circle, we get the ellipse. We then ̊ a fix the point on ̊ the 
periphery of the circle that is closest to the focal point, and let the circle grow. 
We then get å more and more elongated ellipse, and as the circle becomes a line, 
the parabola ˚arises. W h e n ˚ the circle closes again in the other direction, 
the hyperbola appears. We also  ̊have a dynamic transformation of the conic sections.
32. In the case of the parabola, we can write the theorem specially, because we are 
no longer d̊ealing with a circle, but with a line.

Theorem 24: Given a parabola, the focal point, the axis, and a normal to the axis 
where it intersects the parabola. We draw a line through the focal point, and where 
this intersects the normal, we raise a normal to the line, and this will then be 
tangent to the parabola.

We will later see that this theorem has significance in and of itself.
33. A key connection, which also ̊ has practical significance, is a connection between 
the point and the tangent perspective.

Theorem 25 Given a conic section, its two focal points, and two lines from these to 
a point p ̊a the periphery. A tangent to the conic section at this point will then halve 
the angle between the two lines.
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Figure 22: enveloped cone sections
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This means that all light emitted ̊ from one focal point in an ellipse will be 
reflected via the periphery to the other focal point.

34. N ˚n the case of the parabola, one of the focal points is at infinity, which 
implies a modification of the above theorem:

Theorem 26: All lines parallel to the axis of a parabola will be reflected via the 
periphery to the focal point.

Parabolic mirrors and satellite dishes use this principle to˚ collect light and radio 
signals.
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Chapter 1 The 

starting point

In ̊the middle of the 17th century, as mentioned in the introduction, we find the 
first impulses for what would become modern geometry in the work of Girard 
Desargues and Blaise Pascal. They developed completely new methods, and these 
methods are also ̊ linked to two central geometric theorems that bear their names. 
In̊way, these works carry both aspects of a morphological geoemtry, but the emphasis i s ˚ 
on two sides. In the case of Desargues' theorem, we encounter an overarching structure, 
which also ˚has certain possibilities for transformation in it. Pascal's theorem does 
not have the same degree of unity in its structure, but it does more possibilities for 

transformation. In the morphology, we try to unify these sides a.˚

1.1 Desargues configuration
1. A new element in art at the beginning of the modern era is that visual artists 
wanted to depict space as ̊ real as possible. They therefore sought methods to ˚ 
depict three-dimensional objects exactly as one would see ̊ them. Purely concrete 
depictions were made using a glass plate; from a viewpoint, the various objects were 
drawn in as they appeared ̊ on ̊ the plate. This developed into more sophisticated 
methods where geometric figures were drawn in the plane.
2. Desargues was an architect by profession, and he developed his geometric views 
from an artistic perspective. He worked with linear structures in perspective, but he 
also f̊ound results for a circle seen in perspective. When considering triangles in 
perspective, he arrived at a basic theorem: Desargues' theorem.

3. To s̊how Desargues' theorem, we start with a simpler image; a pure enlargement of 
a triangle. We have given a triangle, and a perspective point inside the triangle. 
Through the perspective point, we draw str å l e s through the triangle's

37



38 CHAPTER 1.   THE STARTING POINT

Figure 1.1: Perspective

corners. We then ̊ add a parallel to one of the triangle's sides on ̊ the outside of the 
triangle, and where it meets the line ̊ a lone  from the center, we draw new parallels 
with the other triangle sides. These parallels will then meet on ̊the third line ̊ ,  and we 
have  ̊ c r e a t e d  a new triangle that is in perspective with the first. This is a pure 
enlargement, and is the simplest type of perspective (Fig.??.A).
4. We see n ̊a p ̊ a the image we have f  ̊ a t t  as a whole, and imagine this entire 
configuration in perspective. In other words, we imagine how the whole thing 
would look if this were a figure on ̊the ground viewed from the side. The corners of 
the triangle will still be connected by three lines through a point. However, the 
parallel lines will no longer be parallel, they will approach each other at a greater 
distance, and p ̊a the horizon line they will meet. This applies to all three pairs of 
parallel lines. The whole picture that emerges is n å Desargues configuration. We 
can express it in a theorem (Fig. 1.2).

Image 1. Desargues theorem
Given two triangles in perspective. Then matching sides of the triangle will meet in 
three points that all lie on̊line. We call this line the Desargues line, and we can call 
the perspective point the Desargues point in the configuration.

5. W h e n  ̊ the three vertices of two triangles lie on̊ the same three lines through a
point, we call them point perspective. I f  ̊ the three sides of two triangles meet at
three points on̊ the same lines, they are called line perspective. Desar- gues can be
written briefly based on these definitions:
Desargues' theorem N  ̊ a r  two triangles are point perspective, then they are
also  ̊a line perspective.
6. The configuration can also  ̊be regarded as an emergence in space. It can then be
seen as a triangular pyramid that is cut by a plane; Desargues
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Figure 1.2: Desargues theorem

Figure 1.3: Triangle image

The line then becomes the line between this plane and the base plane. Also  ̊a as the 
shadow a triangle, the configuration appears (Fig. 1.3).

7. Desargues's configuration already has the character of a primordial image, 
because on closer inspection it ̊ turns out to be completely symmetrical in a 
structural sense. In the configuration we find a total of ten lines, and on̊ each of the 
lines we find three points. There are also  ̊ten points, and through each of the points 
we have three lines. If you look further at̊ the different points and lines, you will find 
that there is no structural difference between̊ them. This means that all points can be 
set as perspective points; the choice of point results in two specific triangles, which 
in turn result in a specific perspective line.

8. If we look at̊ how the configuration appears in space, we become aware of this 
symmetry. We are ̊dealing with a tetrahedron that is being ̊cut  across by a
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Figure 1.4: Change of perspective point

plane. The structure of the tetrahedron is given by the fourth row of Pascal's 
arithmetic triangle; it has four planes, six lines and four points, and the numbers are 
found in the row (1,4,6,4,1). In Desargues' configuration, an additional plane is 
added, so we are dealing with five planes ̊ . These planes form two and two for a 
total of ten lines, and three and three meet in ten points. We identify these numbers 
as three numbers in the fifth row of Pascal's arithmetic triangle. This row is given 
by the numbers (1,5,10,10,5,1). For the sake of completeness, we can also  ̊say that 
the five planes form 5 tetrahedrons.

1.2 Points and line in infinite
9. I̊f we return to the perspective triangles with parallel lines, we don't find the same 
symmetry as in the full Desargues configuration. Here there are a total of seven 
points, while there are nine lines. One point, the perspective point, also  ̊differs 
from the other points.
10. It can also  ̊ happen that only a couple of lines in perspective triangles are 
parallel. It then turns out that the perspective line becomes parallel to these. The 
configuration also  ̊a changes character here. There are still ten lines, three of which 
are parallel. However, there are only nine points.
11. In such assessments,  ̊ the images with parallel lines stand out as special. It is 
conceivable that Desargues makes such considerations w h e n  ̊ he introduces the 
elements at infinity. He says that two lines always meet at a point; n  ̊ a r  the lines 
are parallel, they meet at a point at infinity. I f  ̊two points are at infinity and there 
i s  ̊a line through them, then the whole line is at infinity. Thus,  ̊the symmetry of the 
configuration i s  maintained regardless of the position of the elements, only some 
elements occasionally lie at infinity.
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12. What we are to understand ̊by such a point is to be understood ̊as has been the
source much controversy. It is obvious that it is not actually possible ̊ to find such a
point, and for this reason many were unwilling to ̊accept such a concept. One way  ̊ t o  ̊
solve the problem ̊ was to ̊ call the points in infinity ideal points, and thereby
distinguish them from those we can construct with. Such a point was then
determined by the direction of a line. We shall not deal with this problem in its
breadth here, but will return to it w h e n  ̊we see ̊a imaginary points, which created
even greater controversy.
13. In such a perspective, parallelism becomes something special; the first
principle becomes the general Desargues theorem. While we found Desargues'
theorem at
T̊o look at the perspective, we ̊put this one first, and then move on to the special
images. The connection with two perspective triangles at the beginning is then a
consequence of Desargues' theorem: Given that two pairs of matching lines in the
configuration are parallel. Then two points will lie at infinity, and the Desargues line
p a s s i n g  ̊through them will be the line at infinity. The last pair of matching lines that
also  ̊a meet each other at̊ a this line will thus be parallel.
14. The regularity can be further varied; the original perspective point can be at
infinity, or one or more of the corners of the triangles. This gives rise to several
sentences that can be justified. An example is the following.

Figure 2. Given two triangles with vertices p̊ a three parallel lines. Then two 
matching lines in the triangle will meet at three points p̊ of the same line.

15. A new question:̊ What do we really mean by parallel lines in pure geometry.
W h e n  ̊ we do not use metrics, there is actually no answer to̊ this. We can only
say that there are lines that meet at a point on̊ a line at infinity, but we can
actually place this line wherever we want. Then it will happen that w h e n  ̊two
pairs of lines in the triangle meet at̊ the arbitrary  ̊ line at infinity, then the third
pair will do so.
16. However, if we have given two actually parallel lines, we can find parallels to
this using Desargues' theorem, and if we have given two actually parallel lines, we
can find actual parallels to all lines using Desargues' constructions. In this sense,
Desargues' theorem acts as a constitutive structure in geometry.

1.3 Desargues theorem as axiom
17. Such considerations mean that today we see p ̊ a Desargues theorem as an 
axiom in projective geometry. That is to say, this is a way of  ̊ a t e  ̊saying what we 
ideally mean by points and straight lines in the plane. N  ̊ a r  we hold
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us to the world, then we can use a ruler to draw straight lines and they will then meet 
as the theorem says. But in doing so we take the concept of line from the external 
world. By Desargues' theorem, the determination is raised to an ideal viv ˚ a ; which 
admittedly corresponds to the external.
18. Defining the concept of a line is easier in space. There, we can ideally consider
lines and we realize that they have the following property: Given two lines that
have a common point, and two others that have a common point with both of these.
Then ̊the last two must also  ̊have a common point. We realize that lines in space m̊ a
relate to each other like this, but we put it at the same time because through this we
will characterize a straight line. In the plane, we cannot say anything about lines p̊ a
this m ̊ a ,  because such a relationship is obvious here. To ̊a characterize lines in the
plane m̊ a we say that lines are such that can form a Desargues configuration.
19. The fact that we maintain an entire image as s  ̊ adan ,  and from the image
find special images by ̊varying the elements in the image, is what we strive for in
morphological geometry. Here, Desargues' theorem shows itself as a complete
image, which is also  ̊ evident in that it is set as an axiom. However, the
possibilities of variation are soon exhausted w h e n  ̊ we only have points and
lines.
å do; a completely different richness is revealed w h e n  ̊we go  ̊into ̊ the area of
the conic sections  ̊ade.

1.4 Tasks
N  ̊f we don't have a metric, parallelism is justified in relation to given parallelism. If 
two parallel lines are given, we can find parallels to this one, and if two pairs of 
parallel lines are given, we can find parallel lines to all lines.

1. Given two parallel lines, and a point beyond them. Find a parallel to the lines
through the point.

2. Given two pairs of parallel lines, and a single line that is not parallel to these. Find
a parallel to this line.

3. Given two pairs of parallel lines, a single line that is not parallel to these and a
point that does not lie on̊ either line. Find a parallel to the single line through the
point.

Another aspect of Desargues' theorem is that each point can be a perspective 
point. Each new point we choose results in two new triangles, and a new Desargues 
line.

4. Given a Descartes configuration. Starting from another point as the perspective
point, find the perspective triangles, and the Desargues line. This can be repeated
with other points.
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5. Given a Desargues point, a Desargues line, and two matching lines in the 
triangles. In addition, a corner p̊ of one triangle is given. Find the corresponding 
point on̊other triangle.
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Chapter 2 

Pole and 

polar

Desargues also applied his principles  ̊a to ̊a conic sections, by ̊a considering them as 
circles in perspective. Several of the sentences known from Greek times  ̊ f i n d  their 
elementary explanation by this way of  ̊ a t e  ̊a understanding ̊a the phenomena p  ̊ a .  
With the introduction of the terms pole and polar, there is a general realization of 
relationships around centers and diameters. Here is already in germ what would 
become a main method in the projective geoemtry; ̊ a understand ̊ a more 
complicated relationships by ̊a projecting to and from simpler and immeasurable 
conditions.

20. From Greek geometry, we know a special relationship related to the 
dimensions and centers of the ellipse.

Figure 3: Given a diameter through the center of the ellipse. This intersects the jaw 
section at two points, and tangents at these points will then be parallel. The line 
through the center parallel to the tangents is called the conjugate di- ameter of the 
first, and tangents where this intersects will be parallel to the first diameter.

21. The above theorem is obvious  ẘhen it comes to circles. If we take a picture of 
a circle as our starting point and put it into perspective, the elements change 
position, but certain conditions apply. The parallel lines meet three by three at t̊wo 
points on t̊he peripheral line. The resulting image can be expressed:

Figure 4: From a point outside a conic section, we draw tangents to it and a line 
through the tangent points. We draw a new line through the original point, and 
where this meets the conic section we add tangents. These meet at ̊a line between the 
tangent points.

45
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Figure 2.1: Conjugate diameters and axes

Figure 2.2: The Hire theorem
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The theorem is called La Hire's theorem.

22. Here we have arrived at a projective image for conic sections. None of the lines 
are parallel anymore, and the theorem indicates a certain relationship that applies to 
conic sections in general, although it is currently only clear that it applies to 
ellipses. The above theorem has a certain transformability in it, and as we shall see, 
it can be generalized to other more general theorems.

23. In the resulting image, we have two points outside the conic section, and each of 
the points is connected to a specific line formed by the tangent points given by the 
point. We denote n ̊ a such a point as the pole of the line through the tangent points, 
and the line then becomes the polar of this point.

24. We can shorten the above theorem by ̊ using the terms pole and polar: Given a 
pole and polar. We add a new pole to ̊ the polar, then the polar of this will go˚ 
through the pole.

25. If we have given a polar outside an ellipse, the pole will lie inside it. From 
points p ̊ a the line, we find polars that intersect the ellipse, and these all meet at the 
pole of the line. This is related to the center and the horizon line in the image above.

26. Conversely, we find the poles of points that lie inside the conic section. We then 
draw two lines through the point, find the poles of these lines, and the line through 
the poles is the polar of the original point. Thus we can find the poles of all lines, 
and the poles of all points with respect to ̊ an ellipse.

2.1 Center and diameters
27. From the terms pole and polar, we can give projective definitions of the
diameter and center of an ellipse. If we let the pole g̊ a to infinity, the polar becomes
a diameter.

Definition 1. A diameter of a conic section is the polar of a point p̊ a line at infinity.

28. If we instead let the pole g̊ a to infinity, the pole becomes the center:

Definition 2. The center of a conic section is the pole of the line at infinity with 
respect to̊ the conic section.

From this we can conclude that all diameters g o  ̊through the center, because all the 
poles of the diameters lie on̊ the line at infinity.
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Figure 2.3: Expanded La Hire theorem

2.2 Extended La Hires theorem
29. In the images above, we repeatedly draw parallels from a point to the jaw 
section. From La Hire's theorem, however, we cannot construct the tangents 
exactly. However, a certain extension of the theorem makes this possible, and we 
arrive at this by å first looking at å a circular image:

Figure 5: Given a circle, two parallel tangents to it, and two lines parallel to them. 
Lines through the points of intersection will meet at ̊the diameter between the tangent 
points.

We realize this immediately by the symmetry.

30. N å r the image above is in perspective upst år the theorem:

Figure 6. Given a conic section, a point outside the conic section, the two tangents 
from the point to the conic section, and the polar through the tangent points. We 
draw two new lines from the point. Where these meet the conic section, we draw 
common lines, and these will meet at ̊the pole.

We call the theorem the extended La Hire theorem.

31. Extended La Hire's theorem g  ̊changes to La Hire's theorem n  ̊when the two
lines approach each other and finally coincide. Then the lines through the points
will become tangents to the conic section in the common point, and La Hire's
theorem appears. We will take a closer look at̊ this type of transition later.

32. By extending La Hire's theorem, we can find the pole of a conic section n  ̊
a r  the pole is given. We can do this immediately because two lines can form two pairs
of common lines that meet at̊ the pole, and this can then̊ be drawn. We could
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Figure 2.4: bisecting of chords

We can also  ̊draw more lines across the conic section and find more points on̊ the pole. 
This also  ̊ means that we can find the tangents from a point to a conic section n  ̊
w h e n  this is given; we first find the polar, and from this the tangent points.

33. If the pole is inside the conic section, we can also ůse the theorem, although we
cannot draw tangents in this case. Just as above, we draw lines through the pole,
where these meet the conic section, we draw lines, and these meet at ̊ the pole.

34. By extended La Hire, we can realize a classic phrase that has multiple uses.
This is the theorem about shared chords:

Metric law 1. Given a diameter of a conic section, and a chord parallel to the 
conjugate diameter. The chord is then divided into two equal line segments of the 
diameter.

To j̊ustify the theorem, we leave the pole in extended La Hire at infinity. The 
tangents from the point will be parallel, and we find the pole through the tan miter 
points. The other lines will be parallel to the conjugate diameter. We can see from 
figure 2.4 that there are e̊quilateral triangles seen from b  å d e  P and Q that give:

a c a d
=   ;   =

b d b c
a a c d

= =    1
b b d c

a =± b

⇒
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Chapter 3 Pascal's 

hexagram

Although Desargues introduces projective geometry, it can be said that Pascal is the 
one who really  ̊ introduces ̊ the concept of metamorphosis. By his discovery of the 
mysterious conic section theorem, which Pascal called "Hexagram Mys- ticum", 
and by his treatment of it, he lays the seed for what becomes morphological 
geometry. The morphological theme  ̊of Desargues' theorem is the consideration of 
points and the line at infinity. In Pascal's theorem, two other motifs of 
metamorphosis emerge: one is the coincidence of points, and the other is that the 
conic section itself is transformed and  ̊ becomes a pair of lines. These different 
motifs mean that the possibilities for transforming the theorem are much greater; it 
is said that Pascal himself found 400 corollaries to it.

At the various transitions that are made, special conditions occur, which mean 
that various known aspects of the conic section emerge. Of particular importance is 
the fact that the equations for the conic sections appear, which means that we can 
use Pascal's theorem as a starting point for conic section theory.

3.1 Pascal's Hexagram Mysticum

Just as Desargues' theorem appears as triangles in perspective, Pascal's theorem 
can, from one point of view, be seen as a circular structure with parallel lines seen 
in perspective.

We start with a circle and draw two parallel lines across it. For the sake of 
clarity, we place them not too far apart and let the chords span about 120 degrees. 
The parallel lines will n ̊a intersect two arcs p ̊a the circle. From two of the points of 
intersection with the circle; from two points next to each other, we draw two new 
parallels, and these intersect a new arc of the circle that is the same size as the first 
two. If we draw n ̊ a lines between these points and the original one, then  ̊ a these 
lines will also be

51
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Figure 3.1: Pascals

Figure 3.2: Pascal's theorem

parallel because they cut across the same arc. If we follow the lines, we will see that 
they form a hexagon (Fig. 3.2.A).

Figure 7. I f  ̊two pairs of lines in a hexagon inscribed in a circle are parallel, then ̊  
the third pair will also be parallel.

We see n å p ̊a the circular image we have in mind in perspective as we did with 
the triangle image. Two things will happen: the circle will become an ellipse, and 
the three pairs of parallel lines will meet on t̊he common horizon line. We thus have 
the theorem (Fig. 3.2.B)

Figure 8 Pasclas theorem Given a hexagon inscribed in a conic section. Then 
opposite ̊sides of the hexagon will meet at three points that all lie on ̊the same line.

We have thus arrived at a variant of Pascal's theorem. The introduction here is 
not a definitive proof; what is presented is intended to ̊ make the connection 
probable. We thus assume Pascal's theorem, and see what is
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consequences of it. The fact that it leads to certain things has a reciprocal effect; if 
more  k̊nown things can be derived, then we become familiar with the theorem and 
can it further in the morphological considerations.

The first thing we can realize is that we can place the hexagon however we 
want on ̊ the conic section. It is not a question of a hexagon as a view, but as a 
structure, where we stretch lines between six completely  ̊ arbitrary points on ̊ the 
periphery. It will always happen, however, that three pairs of opposing  ̊sides, in a 
structural sense, meet at three points on ̊the same line.

Here,  ̊a combinatorial question ̊can also be raised. Given six points on ̊a per- ifer, as 
many as 64 different hexagons can be formed between the points, and this gives 
rise to 64 pascal lines. It can also be investigated how the pascal lines are located; 
you will always find points where a pascal line meets the intersection of other 
pascal lines. However, these questions ̊alone will not be explored here.

Although we can lay out the hexagon any way we like, there are some 
configurations that turn out ̊ to be more important than others because they are the 
starting point for the various morphological movements. In particular, there are two 
configurations of Pascal's theorem that come to mind. In one configuration, which 
we here call Pascal1, we have an ordinary hexagon p å an ellipse, but so that the 
main weight of the points lies towards an edge. W h e n  ̊we draw opposite  s̊ides 
of this, they will meet in three points located on t̊he Pascal line outside the ellipse.

In the second image, which we call Pascal2, we let the lines in the hexagon cross 
each other. The points in the hexagon are placed in the order 1,5,3,6,2,4 around the 
ellipse, and w h e n  ̊we draw lines in the natural order 1,2,3,4,5,6, points of intersection are 
formed between opposite  ̊sides inside the ellipse, and the Pascal line g  ̊ a r s  over the ellipse. 
(Fig.3.3)

Pascal's theorem applies in̊ the same w a y  ̊ to all conic sections, whether circle, 
ellipse, parabola or hyperbola. But certain things occur for each of the conic 
sections, and this is what makes them stand out ̊as distinct.

Before we look at̊ the morphological themes associated with the properties of 
the particular conic sections, we look at̊ a transformation of the conic section 
itself; which will not play a further role in the consideration of Pascal's theorem, 
but which will later prove ̊to be of the greatest importance. It is a matter here of 
the conic section degenerating as we say, and becoming two lines. This will 
result i n  ̊ a configuration of only points and lines, and the resulting law is called 
Pappo's theorem. The starting point is Pascal2, and the ellipse is elongated so that it 
becomes two lines.

Figure 9: Given two lines, and three points on̊ each of the lines. We form 
intersections of lines between two and two points p̊ a each line, and the intersection 
points are located
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Figure 3.3: Variants of Pascal's theorem

p ̊has the same line.

Pappo's theorem was already known in Greek times, and is one of the first i̊nsider 
theorems from that time. Like Desargues, it is a completely symmetrical theorem, 
consisting o̊f 9 points and 9 lines; there are three points on e̊ach line, and three lines 
through each point. Also  å Pappo's theorem plays a role in the axiomatization of 
projective geometry.

As I said, we will see later what significance this transition has. W h e n  ̊  
several conic sections are included in the images, this transition will occur in ˚ 
many ways. We  ̊ then move on to the conic section morphology.

We are going to look at ̊two main topics; how constructions arise that allow us to 
define the different conic sections separately, and how the equations for their 
creation ̊ arise.  In order ̊ to achieve  ̊ this, we will make movements with the 
configuration so that special variants emerge. Each variant is suitable for its form ̊a l .  
There are two different movements that change the character Pascal's con- 
figuration so that new ones  ̊ ar ise.  One movement is that lines become parallel, as 
in Desargues' configuration. The other is that points on ̊the periphery coincide. This 
causes tangents to  ̊ar ise,  and special configurations appear.

The first movement we make is ̊ to let two lines in the structure be parallel. These 
will then meet at infinity. The Pascal line that goes  ̊ through this point will then 
also be  ̊ a parallel to these lines, so that we f  ̊h a v e  the theorem.

Figure 10. Given a hexagon inscribed in a conic section, where two opposite ̊ sides 
are parallel. Then the Pascal line of will be parallel to these lines.

W  ̊ h e n  two pairs of lines become parallel, we will have ̊two points in finity. The 
Pascal line that g  ̊ a r  through these points will thus become the line at infinity. The 
third
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Figure 3.4: Parallel lines

The pair of ̊ opposing sides must also  ̊ meet on̊ a the Pascal line, and must̊ a 
consequently also  ̊be parallel. From this we  ̊ g e t  the connection.

Figure 11. I f  ̊two pairs of opposite̊ sides of a hexagon inscribed in a conic section are 
parallel, then  ̊the third pair of opposite̊ sides will also be parallel.

We see that these sentences are analogous to two of the sentences related to Desargues 
configuration.

3.2 Coinciding points
By ̊ moving the points p̊ on the conic section periphery, it can happen that two points 
with a common chord g  ̊merge into one point. It is then no longer possible to
t̊o find the connecting line between them. However, if we follow what happens as 
the point approaches, we will see that the line between the points eventually 
becomes a tangent in the double point. This is a purely geometric process that 
corresponds to a differential process in the analysis. W  ̊ h e n  we do not use 
analytical methods, we must̊ put this as we find it intuitively. We can  ̊not prove this in 
the usual sense, but set it axiomatically.

Axiom 1.  ̊ f  two points in a Pascal configuration coincide, the line between them 
will be the tangent in the double point.

Whenever we have two points coinciding we use this axiom. There are several 
ways  ̊ i n  w h i c h  one or more pairs of points coincide p  ̊ a ,  and each of these  ways ̊

gives rise to particular theorems with particular properties. Each of the resulting 
variants will eventually be applied to its particular form ̊a l ,

and we will g̊ a systematically through these.
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Figure 3.5: Coinciding points

Pentagon configuration
N  ̊f a couple of points coincide, we will have a pentagon left, with a tangent in one of 
the points. (Fig.3.5.A)

Figure 12. Given a pentagon inscribed in a conic section. Then we want a tangent 
at a point, a line in the pentagon, and a line through two intersections between the 
other four lines, g å through the same point.

This theorem can be used constructively to ̊find a tangent at a point n ẘhere we have 
given a conic section. We then find the Pascal line at two pairs of opposite ˚ sides, 
and where this meets the opposite ˚side of the tangent, we draw the tangent to the 
tangent point.

Two pairs of points in the Pascal configuration can coincide in t̊wo different ways 
.̊  It may be that there are two pairs of neighboring points that coincide, 

or it may be that the points form opposing  s̊ides. In both cases, squares are formed, 
but the character of the configurations is different. T̊he theorem that arises ẘhen two 
pairs of  ˚opposing points coincide is called Mclaren's theorem 
(Fig. 3.5.B).

Image 13. McLaren's theorem
Given a square inscribed in a conic section. Then opposite s̊ides, and opposite t̊angents 
will meet at points that all lie on ̊the same line.

This theorem has its own name after the English mathematician McLaren, and 
is then called McLaren's theorem.

In order ̊ to have a name for the second theorem that arises ẘhen t̊wo pairs of 
points coincide, we call it McLaren's second theorem. (Fig.3.5.C)
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Figure 3.6: emergence of conic section

Figure 14. McLaren's second theoremGiven a square inscribed in a spline, and 
tangents at two neighboring points in the square. Sides of the square and tangents 
meet at two points, the line between the tangent points and the  ̊ opposite  side of a 
point, and these points lie on ̊the same line.

The last variant of configurations with coinciding points f ̊ a r we n ̊ a r three pairs 
of points coincide. There is only one variant here (Fig. 3.5.D).

Figure 15: Given a triangle inscribed in a conic section. Then the sides of the 
triangle will meet the tangents in  ̊ opposite  corners at three points that lie on ̊ the 
same line.

3.3 Construction of the different cone sections
In addition to giving properties to the conic sections, Pascal's theorem also 
determines  ̊these implicitly. If we have given five points on ̊a conic section, we 
can, by ̊applying the theorem, find as ̊many new points as we  ̊need. We can realize 
this if we start from a given conic section with a Pascal con- figuration. If we 
allow any ̊of the points to move to ̊the periphery, then two of the lines will follow. 
As a result, the intersection points with the opposing  ̊sides will , and the Pascal 
line will revolve around the third point on ̊the Pascal line. If we turn this around ̊and allow 
the Pascal line to rotate, the process will be reversed, the point p ̊on the periphery will 
then move and it will be able to draw the conic section.

This construction forms the basis for all constructions of conic sections based 
on Pascal's theorem. The Pascal line turns, two lines follow it, and their intersection 
draws the conic section.
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By ̊ placing the starting points in̊ the right places, the three different conic 
sections - ellipse, parabola and hyperbola - will emerge, and we will see that these 
differ in their relationship to the line at infinity. For construction, however, we do 
not use the general variant of Pascal's theorem, but McLaren's theorem, because the 
constructions here are simpler, and because the tangents eventually make 
themselves felt.

We take as our starting point the McLaren theorem that emerges from 
Pascal1. (Fig.3.5.B) By ̊holding the top point of̊ the conic section fixed while 
turning the Pascal line, the bottom point will move along the conic section, thus 
describing it. The actual construction method  ̊can also  ̊be described explicitly.

We start with two lines a and b that form a V, and these meet at P. We set a 
point A p̊ a on one line, and a point B p̊ a on the other line. Through points A and B 
we draw lines c and d, which intersect below A and B. We draw s̊ a line p through P 
approximately horizontally, and this line meets c and d at their respective points. 
From these points, we draw lines through A and B, and these meet at Q. N  ̊ a r  s̊ a 
the line p revolves around P, Q will describe a conic section.

We could also  ̊a take lines through Q as our starting point: lines through P 
intersect these at two points, and lines through these and A and B also  ̊a form 
points on̊ a the underside of the conic section.

The resulting conic section is an ellipse. By ̊moving Q outwards, and finally to 
infinity so that the lines through Q become parallel, a parabola construction is 
produced.

If n̊ a the lines c and d in the construction image turn even slightly, then the 
point Q will not be formed above the points A and B, but below. If we do this 
so that Q remains below P, the construction will produce a hyperbola. By ̊a turning the 
line p we will see that points Q in this case g  ̊ a r  towards infinity, for s å̊ a lie in 
infinity n  ̊ a r  lines become parallel. S̊ a Q will reappear on̊ a the underside of P 
where it also  ̊a describes an arc, before it again disappears to infinity. S appears s̊ 
a again from the other side, and the arc eventually closes.

The hyperbola will p̊ a this m  ̊ a t e n  appear by a continuous movement, and the 
two parts of this naturally belong together in the light of points at infinity. We can say 
that a hyperbola is a conic section that intersects the line at infinity. In this view, the 
parabola is a conic section that is tangent to the line at infinity, while the ellipse does 
not touch the line at infinity. Based on this, we define the different conic sections.

Definition 3. A hyperbola is a conic section that cuts across the line at infinity, a 
parabola is a conic section that is tangent to the line at infinity, and an ellipse is a 
conic section that neither cuts nor is tangent to the line at infinity.
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3.4 Hyperbelens asymptotes
We can make a special change to the above construction for the hyperbola. We let 
the two points A and B p̊ a the lines a and b g̊ a to each other. The two lines c and d 

that g  ̊ a r  through these points will thus be parallel to a and b, and we let them 
meet at the point Q above P. We draw the line p through P, and this meets c and d at 

points C and D. The lines from these points to B and A will also  ̊a necessarily be 
parallel to the lines a and b, and they will meet at the point S. N  ̊ a r  p dreier, S will 

describe a hyperbola. We emphasize n̊ a that all the conic sections produced by this 
construction are tangent to lines a and b at points A and B. In the construction 

above, the points of tangency are therefore at infinity, and the lines a and b will 
therefore be tangential to the hyperbola at infinity. These lines are n̊ a the asymptotes 
of the hyperbola. In the morphological geometry, we thus define the asymptotes of ̊a 

to be
the lines tangent to the hyperbola where it intersects the line at infinity.

Definition 4. The tangents of the hyperbola where it intersects the line in infinity 
are the asymptotes of the hyperbola.

A construction for the hyperbola based on the asymptotes can thus be 
expressed explicitly: Given two lines (a and b) through P, and a point
(Q) between the lines. Parallels ( c and d) with a and b through Q intersect the line p 
(which g  ̊ a r  through P) in C and D, and parallels through these points intersect 
each other in S. N  ̊ a r  p dreier vil S tegne en hyperbel med a og b som 
asymptoter.

3.5 Metric conditions
If we really have a hyperbola in the above construction, we can realize w h e n  ̊we 
study the metric relationships that arise ̊ .  W h e n  ̊ one or more lines in the 
configuration become parallel, similar triangles of different kinds may  ̊arise, and 
from consideration of the relationships inherent in this, we can infer relationships 
that apply to the conic sections. For the hyperbola above, we find a known 
relationship by ̊considering the static variant of the construction above.

Figure 16: Given a hyperbola and its asymptotes, and two points p̊ a its per- 
ifery p̊ a either side of the center. Parallels with the asymptotes are drawn through 
the points, and the line through their intersection points will then also  ̊a g̊ a pass 
through the center.

If we n̊ a see p̊ a the pure point line structure that is formed, i. e . we  ̊ a 
disregard the hyperbola, then we can recognize it as the point line structure of a 
well-known metric relation. This says:
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Figure 3.7: Tangents are asymptotes

Metric law 2. Gnome composition
Given a rectangle, a diagonal in it, and two lines parallel to the sides that meet on̊ 
the diagonal. This creates two rectangles, one on̊ each side of the diagonal, and these 
are equal in size.

This immediately gives a metric relationship for the hyperbola. The two areas 
are formed from the points on̊ the periphery, which means that all areas formed in 
this way are of equal size.

Metric law 3. Given a hyperbola and its asymptotes. From a point p̊ a per- ifer, we 
add parallels to the asymptotes, and these together with the asymptotes form a 
parallelogram. W h e n  ̊ the point moves, the area of the parallelogram will be 
unchanged.

McLaren2 f  ̊ i s  a definite shape n  ̊ i s  the two points of tangency g  ̊ i s  to 
infinity, and the tangents here become asymptotes. (Fig.3.8)

Figure 17: Given a hyperbola and its asymptotes , and two points on̊ the periphery. 
A line through these points, each parallel to its own asymptote, forms new trap 
points with the asymptotes. The line through these is then parallel to the line 
through the points p̊ at the periphery.

This configuration gives rise to a metric context.

Metric law 4. Given a hyperbola, its asymptotes, and a line that cuts across the 
hyperbola. Between the line

P̊ due to the parallelism, we see that the line through the points p̊ a the periphery 
forms line segments equal length; a= b= c (Fig.3.8).
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Figure 3.8: Equal length law

Legality can be used t o  ̊construct the hyperbola. Given two lines and a point, 
draw lines from the point and subtract the distance from the point to one line 
from the other line. These points will then form a hyperbola with the lines as 
asymptotes.

McLaren2 can also  ̊a be used to ̊a find a metric relationship on̊ a elements. We 
then let the two tangents be parallel, and let the line through the two points on̊ a the 
periphery be parallel to the line through the tangent points. Then we have the 
following:

Figure 18: Given an ellipse, two tangents to it, and two points on̊ the periphery such 
that the line through them is parallel to the line through the tangent points. We 
draw lines between the tangent points and the points on̊ the periphery, and where 
these meet the tangent points are formed, and lines through these are then parallel 
to the line through the tangent points.

By ̊ a studying the configurations here, we see that the distances from the 
points p̊ a the periphery to the tangents are the same length.

Metric law 5. Given an ellipse, two tangents to it, and the line (l) through the 
tangent points. A line parallel to l forms line segments of equal length between the 
ellipse and the tangents.

3.6 Equations for the conic sections

The knowledge of the conic section equations is traced back to the problem of the 
doubling of the cube, one of these remarkable Delphic problems that helped
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√

Figure 3.9: Parallelism ellipse

Figure 3.10: Doubling of the cube

s̊ a lot to the development of mathematics. 1 Here the task is ̊to construct a cubic 
altar that has twice the volume of another cubic altar. This proved ̊ to be 
problematic with a compass and ruler, because it involves
t̊o construct a line segment that is 3 2 larger than another, which has only 
recently  ̊been shown to be impossible.

The Greek Menaechmus isẘith ̊having discovered that conic sections can be 
used for this purpose, and he gives two solutions of the problem using them. In 
one case he uses two parabolas, in the other case a parabola and a hyperbola. 
He makes use of the numerical relationships associated with these curves, and 
by ̊solving equations with two unknowns he finds the desired quantity.

N  ̊e have already seen how metric relationships emerge from Pas-

1The other two problems: T̊o divide an angle with a compass and ruler alone; ̊To construct 
a line segment that is as long as the circumference of a circle n  ̊ a r  we know the diameter.
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-

a2 b2 a2 b2

cals theorem, s̊ a, finding ̊equations becomes an extension of this, because equations  ̊a 
can also be regarded as metric relationships. It is therefore possible to
F̊inding the equations of the various conic sections from similar considerations 
we made when  ̊ we found metric ratios. We are not going to find the very general 
equations; that can be done by transformation within analytical geometry. Here we 
will see that the basic equations appear. For the parabola, we will see that the equation 
y= x2 appears, and for the ellipse and hyperbola
we will arrive at the symmetrical equations x

2
+ y

2
= 1 and x

2− y2
= 1.

We immediately see how an equation for the hyperbola n  ̊ a r  arises from the 
area theorem n  ̊ a r  the x-axis and y-axis are asymptotes. We f  ̊ a r  in this case xy=  k 
or y= k .

To ̊ a obtain  ̊ a txhe other equations, we start a particular variant of McLaren1, 
which we can also  ̊a use to ̊a construct the conic sections. We imagine a conic section 
and add parallel tangents to it. The Pascal line will thus become parallel to these 
lines, and the theorem changes character.

Figure 19: Given a conic section and two parallel tangents to it. From two points on ̊  
the periphery of the conic section, we draw lines through the tangent points, and 
these will intersect at two more points. The line through these points is then 
parallel to the tangents.

Parabolas

This configuration f  ̊ a r  a special expression for the part of the parabola. We imagine 
an ellipse with two tangents, but let s ̊a this become infinitely elongated so that it 
becomes a parabola. One of the tangents will be at rest, while the other becomes the line 
at infinity. In this way we f  ˚a r  a modification of the theorem above.

Figure 20: Given a parabola, a tangent to it, and two points p ̊ at the periphery. 
From the points p ̊ a the periphery, we draw lines to the tangent point, and lines 
parallel to the parabola. These meet at two points, and the line through these points 
is parallel to the tangent.

From this theorem, we can n ̊a to the elementary parabola equation quite 
directly. We then let the tangent to the parabola be the x-axis, and let one point p ̊a the 
periphery be ( 1, 1). (Fig.4.9) By ̊a looking at the equilateral triangles, we see 
how the equation is easily obtained. We have

y x

x
=

1
⇒ y= x

The equation can be generalized by ̊a choosing other values for the fixed point.

2
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Figure 3.11: The equation of the parabola

Ellipses
We apply ̊to show the equation for the ellipse.

Metric law 6. The equation for a central ellipse is given by:

x2 y2

a2+
 b2= 1

We let the ellipse have a center at the origin with the longest axis p̊ a the x-axis. 
We place the parallel tangents where the ellipse intersects the x-axis, and we choose 
one point p̊ a the periphery where it intersects the positive y-axis. The other point is 
freely chosen and has coordinates (x,y). Lines from the points of intersection with 
the x-axis through these points will intersect at two more points P and Q, and the 
line through these is then parallel to the y-axis. At
B̊y comparing the shaped triangles that are formed, we will be able to set up the 
following expressions.

1)
PR

=
 b

2)
QR

=
 b

3)
QR y

= 4)
PR y

=
AR a BR a AR a+ x BR a− x

We can notice that the product of the right's 1) and 2) is equal to the product of the 
left's 3) and 4). Thus,  ̊a the left's products are also equal, which leads to

b b y y
=

a a a+ x a− x
b2 y2

⇒ a2= a2+ x2

x2 y2

⇒
a2+ b2= 1
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Figure 3.12: The ellipse equation

Figure 3.13: The equation of the hyperbola

Hyperbolic

Ås mentioned above, it is not ̊ easy to find the equation for the hyperbola n  ̊
w h e n  it is symmetrical about the axes. Here, however, we  ̊ a r e  also  ̊using the 
asymptotes; we choose one point at infinity p̊ of the hyperbola. This forms lines 
parallel to the asymptotes, and equal triangles are also  ̊formed here. In̊ the same 
way  ̊as for the ellipse, we find various similar relationships.

1)
PR

=
 b

2)
QR

=
 b

3)
QR y

= 4)
PR y

=
AR a BR a AR a+ x BR x− a
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The only difference from the ellipse ratios is that the denominator in the last term is x− 
a instead of a− x. This leads to the modification of the hyperbola equation.

b b y y
=

a a a+ x x− a
b2 y2

⇒ a2= x2− a2

x2 y2

⇒
a2− b2= 1

Thus, all conic sections are determined b  ̊ a d e  by constructions and their 
equations. Pascal's theorem can thus be used as an implicit definition for conic 
sections.



Chapter 4 Duality

The impulses from Desargues and Pascal disappeared with them from the 
mathematical landscape. Specifically, Pascal's essay on conic sections disappeared; 
only a sketch of this exists today. Even ̊ a Desargues' work was completely forgotten, 
although it eventually reappeared. The analytical geometry founded by Descartes 
proved very fruitful in many contexts, and with the impulses from Leibniz and 
Newton, it developed b ̊ a d e in breadth and depth throughout the p ̊a 1700s. Euler's 
work in particular established a completely new mathematics.
However, towards the end of the 18th century and at ̊ the beginning of the 19th 
century, a new germination of the other type of geometry took place. In the Ecole 
Polytecknic founded by Ges- pard Monges, an environment emerged in which pure 
geometry was central. Monge himself developed the descriptive geometry that 
made it possible ̊to create images of three-dimensional bodies, and from a number 
of students such as Brianchon, Gergonne and Poncelet emerged what would 
become projective geometry. Although they were ̊initially unfamiliar with the work 
of Desargue and Pascal, the most important principles were found and several new 
ones were added. This applies to principles such as duality and projectivity.

4.1 The duality principle
35. When considering Desargues' theorem in the introduction, we noted the great 
symmetry in the theorem, which was evident in the fact that there were ten points 
and ten lines in the configuration. We do not see the same symmetry in Pascal's 
theorem. Here, in addition to the conic section, we have nine points, but no more 
than seven lines. In å, however, there is a configuration in which the number of 
points and lines are reversed; here there are nine lines and seven points.

Image 21: Brianchon's theorem

67
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Figure 4.1: The duality principle

Figure 4.2: Brianchon's theorem

Given a conic section and a hexagon that circumscribes this. The three main diagonals 
in the hexagon will then meet at the same point.

The theorem is called Brianchon's theorem, and is possibly even simpler in expression 
than Pascal's theorem.

36. We call Brianchon's theorem n̊ a the dual of Pascal's theorem. This is not only 
because the number of lines and points is reversed, but because the entire structure 
is reversed. In both sentences we take a conic section as our starting point, but 
where we place points on̊ the periphery of one, we place tangents to the other. 
Tangents to a conic section are thus the dual image of points on̊ the conic section. 
Furthermore, we draw lines between points, while in the dual case we find points 
between lines. This also continues  ̊ a ;  in Pascal's case we find three points between 
three pairs of lines, while for Brianchon



4.1. THE PRINCIPLE OF DUALITY 69

Figure 4.3: Pappos variant Brianchon

draws three lines between three pairs of points. Finally, we draw a line between 
three points and find a point common to three lines.
37. The basic duality operations are thus that points become lines and vice versa, and 
that lines through points become intersections between lines. There is another reason for ̊
introducing the elements at infinity; ordinarily we always find a line through two 
points, but for lines we do not find a common point n  ̊ a r  they become parallel. 
With the introduction of points at infinity, duality applies.
38. The conic sections appear  ̊ as self-dual; on̊ a the periphery we can have b  ̊ a d e  
points and lines. Another aspect of the self-duality of the conic sections is that  ̊a 
Bri- anchon's theorem also  ̊a becomes Pappo's theorem. Pappo's theorem is dual 
to itself; the structures consist  ̊ of nine points and nine lines in a symmetrical 
relation. W̊hile Pascal's theorem changed to Pappo's when the conic section became 
two lines, Brianchon's changed to  ̊ w h e n  the conic section became two points. 
This happens when an ellipse becomes increasingly narrower, and finally g  ̊ a r  
together into a line segment. To ̊a f̊ a this m̊ a we choose a variant of Brianchon that 
allows this; there m̊ a be no diagonals where the conic section becomes a point, 
but the diagonals m̊ a g̊ a to other intersections between the lines.(Fig.4.3. Pappos 
arising ̊ ar can be expressed dually: Given two points, and three lines between 
each point. Then three diagonals are formed between the intersections that meet 
at the same point.

39. The fact that the conic sections in̊ this way can become two lines on̊ one side 
and two points on̊ the other is a key property. It will ̊play an absolutely decisive role 
in  ̊how the various images are metamorphosed. The principle of duality, which 
is initially  ̊ presented as an abstract principle, turns out ̊ to be able to be 
understood ̊morphologically in that the conic sections have this dual possibility 
of transformation.
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40. Both point-line structures; Pappo's and Desargues' theorems  ̊are thus self-dual. 
The simplest line-point structure, the triangle, is also  ̊ self-dual; it can either be 
regarded as three points with three common lines, or as three lines with three 
common points.
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41. According to one tradition, dual theorems and relationships are set up in parallel
columns. Even if we do not follow this, we can summarize the basic relationships in̊ this
way.

• point

• Two points make a line

A triangle best  ̊ a r  of
three points and three
common lines

There are points on̊ in
the conic section

A conic section can
become two points

• Line

• Two lines give a point

A triangle best  ̊ a r  of
three lines and three
common points

There are lines at̊ for the
conic section

A conic section can
become two lines

42. Theorems can also  ̊be set up in̊ this way, and in purely ̊ practical terms, one can
swap̊ a lines and points and create̊ a new theorem. We can look at̊ an extended La Hire
in this light; we take this as our starting point and swap it around literally  ̊.

Given a conic section, a point 
outside the conic section, the 
two tangents to the conic 
section, and the polar common 
to the tangent points. We draw 
two new lines from the point 
above the conic section. We 
draw lines between 
intersection points with the 
conic section, and these have a 
common point with the polar.

Given a conic section, a line 
across the conic section, the 
two intersections with the 
conic section, and the pole 
common to the tangents. We 
add two new points on̊ the line 
outside the conic section. 
Between the tangents to the 
conic section we find points, 
we draw common lines, and 
these have a common line with 
the pole.

4.2 Development of Brianchon's theorem
43. In ̊ the same way  ̊ as Pascal's theorem, we can form pentagons, squares and 
triangles dually. We could do this in a purely abstract way by taking the already 
formed Pascal specializations as a starting point, and following a

-

-

-

-

-

-
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Figure 4.4: Dual extended La Hire

principled dualization like the one we have described above. However, we will 
stick more closely to the morphology of ̊a see also ̊a p ̊a the dual formation process.

44. The special Pascal configurations arose when two points on ̊ a periphery 
coincided to form a point, and the connecting line between them became a tangent. 
The dual process is that two lines approach each other, and eventually coincide. 
The infinitesimal process then tells us that the point becomes the tangent point 
where the tangent is tangent.

Axiom 2. W h e n  ̊ two tangents p ̊ a a common conic section merge into one, the 
common point between them becomes the tangent point between the tangent and 
the conic section.

45. All the variants from Pascal are c̊ompletely dual to this one. If we allow a couple 
of lines to coincide, ẘe get the following theorem.

Figure 22: Given a conic section circumscribed by a pentagon. We find two diagonals 
in the pentagon. Å line through the fifth corner of the pentagon that p a s s e s ̊  
through the opposite ̊ tangent point will also pass ̊ through the intersection the 
diagonals.

This statement is useful because  ̊ f a conic section is given by five lines, we can 
find the points of tangency between the conic section and the lines, and thereby 
find five points for the conic section.
46. As in Pascal's case, ̊ we have two variants of squares that arise ̊ when ̊ two pairs of 
lines coincide.

Image 23: Dual Mclaren
Given a conic section, and a square that circumscribes this. A line between two
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Figure 4.5: Variants of Brianchon's theorem

of the tangent points will then g̊ a through the point where the diagonals of the square 
meet.

47. The second square statement is given by:

Figure 24: Given a conic section, and a square that circumscribes it. Two lines 
between tangent points and corners in the square will meet on̊diagonal in the square.

48. Finally, we have the dual of the triangle theorem.

Figure 25: Given a triangle and a conic section inscribed in it. The lines between 
the corners of the triangle and the tangent points will meet at the same point.

These developments are shown in figure 4.5

49. As for Pascal's theorem, we can derive several relationships also  ̊ from 
Brianchon's theorem. We ob ta in  ̊constructions, metric relations and equations. Also  ̊
a here we can find the different variants by morphological movements, or we can 
translate the constructions directly by ̊a dualizing the Pascal variants.

4.3 Dual constructions
50. By ̊using Pascal's theorem, we could construct conic sections as point curves. By 
using Brianchon's theorem, we do the dual; the conic sections appear ̊ as line 
curves, or envelope curves. By ̊finding a number of tangents to a conic section based 
on Brianchon's structure, the curve is formed.
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Figure 4.6: Locus of ellipse

51. The clearest construction picture  ̊ i s  obtained by ̊ starting with the dual 
McLaren. The theorem states that i f  ̊ a conic section is circumscribed by a 
quadrilateral, then the lines between opposite  ̊points of tangency will  ̊pass through 
the intersection of the diagonals. We then start with three sides of the square and 
insert a diagonal. From a point on̊ the diagonal, we draw lines to the corners, and 
through the points where the diagonals meet the opposite ̊ side, we draw a line; 
this is a tangent to the conic section. Continuing ̊the process produces an ellipse.

52. The construction of the parabola can be obtained by a modification of 
McLaren. We leave the two tangents as a "V", and let the upper tangent g̊ a to 
infinity. The infinite ellipse g  ̊ i s  transformed into a parabola, and we f  ̊ a r  the 
regularity:

Figure 26: Given a parabola, two tangents to it, and the line between the tangent 
points. We find parallels to the tangents that meet on̊ the transversal, and where 
these meet the tangents we draw a line. This is also t̊angent to the parabola.

If we let the n̊ a point p̊ a line move, the new tangent will envelop the parabola.

53. If we allow the upper tangent to move even further, so that it comes from 
below, the conic section will be a hyperbola. The construction of the hyperbola 
proceeds  ̊ar  p̊ a the same w a y  ̊as for the ellipse.

54. As for the Pascal variant, we can also  ̊ a here let the tangent points g̊ a to 
infinity. the two tangents will then be asymptotes. The transversal will also  ̊a g̊ a to 
infinity, and points p̊ a this will give parallel lines, resulting in the hyperbolic 
image:
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Figure 4.7: Envelope Parabola

Figure 27: Given a hyperbola, its asymptotes and two tangents. The lines through 
the points where the tangents meet the asymptotes are then parallel.

We construct the envelope hyperbola by ̊having a tangent. From the meeting points 
with the asymptotes, we draw parallel lines, and where they meet the asymptotes, 
we draw tangents. By ̊moving the parallels, we find lines that envelop a hyperbola.

4.4 Metric conditions
55. As in the case of Pascal, we also  ̊ find metric relationships in the point line 
structures that arise ̊ ,  and this applies in particular when  ̊ a r  parallelism arises ̊ .  
We show a relationship for each conic section.
56. The starting point for the ellipse is McLaren. If we allow the two tangents to 
the main axis to be parallel, and the transversal itself to be perpendicular to̊ these, 
this will become the axis of the conic section. If we also  ̊ let the third tangent be 
perpendicular to̊ the two lines,  ̊ the product law for ellipses will also emerge. Three 
lines through a point intersect two parallel lines so that the conditions are equal. We 
have:

Metric law 7. Given a conic section, a major axis, and the tangents to the ellipse 
where it meets the major axis. A tangent intersects the tangents at two points, and 
the product of their heights p̊ a the axis is constant.

a c
=

c b

⇒ from= k
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b

Figure 4.8: Product law ellipse

Figure 4.9: Ratio law parabola

57. A known theorem metric theorem for the parabola also  åpplies. Based on the 
parabola's envelope theorem (26), a known metric relation associated with it emerges.

Metric law 8. Given a parabola and three tangents to it. Then one tangent will intersect 
the other two so that the ratio of lengths will be equal.

c e
=

d f

58. We see from fig.4.9 that both ratios are equal to the ratio a p̊ a line between
the tangent points.
59. The hyperbola theorem above immediately gives a metric theorem. The two 
asymptotes, tangents and parallel lines form a trapezoid, and this contains two 
equilateral triangles. This gives a product theorem:
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Figure 4.10: Product law hyperbole

Metric law 9. Given a hyperbola symmetric about the x and y axes, and a tangent to the 
hyperbola. This intersects the axes at points, and the product of the distances to the 
origin is constant.

y b
=

a x
k

⇒ y=
 x

4.5 Envelope equations
60. The metric law we have found for the hyperbola is also an envelope equation for 
it where the axes in the coordinate system are the asymptotes of the hyperbola. Here 
the coordinates are the intersection of the lines with the axes. The envelope 
equations for the curves n  ̊ a r  they are symmetrical about the axis, p̊ ar similar m  ̊
a t e  as we found the curves from Pascal.

61. For ̊a f̊ a the ellipse's equation, we start from the metric law.

Metric law 10. The envelope equation for a central ellipse with axes a and b is given by
a2 b2

x2+
 y2= 1

We then see from the 
figure y y'

=
x x− a

y''
=

x+ a
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x a a

2 2 2

Figure 4.11: Envelope parabola But 

we have that y' - y''=  b(2) so that

y y y' y'' b2

x 
- 

x
=

 x− a 
- 

x+ a
= x2− a2

2
⇒ y x− y a = x2b2

a2 b2

⇒
 x2+

 y2= 1

We see that the equation has the same form as the point equation, but the numerator 
and denominator have switched places.

62. The equation for the hyperbola can be found ̊in the same way. The equation for the 
hyperbola has the same form as the equation for the point version, y= ax2. We 
find it by ̊a setting the McLaren p̊ a upright as we did for the point version, and here is 
the geometric picture.

Figure 28: Given a parabola and three tangents to it. From one tangent point we draw 
a diameter, and where the tangent intersects the other lines we draw parallels to the 
remaining tangent. These will meet at̊ the diameter.

63. For the ̊a f̊ a forward equation, we let one tangent be the x-axis, the diameter the 
y-axis, and one tangent forms a 450 angle with the axes. From fig.4.11 we realize 
equilateral triangles, and the equation is found.

y
=

 x
⇒ y=

 1 
x2
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Figure 4.12: The slope of a parabola

64. The gradient of the elementary parabola is easily obtained by the triangle variant of 
Brianchon. N  ̊ f  we have a parabola, and one tangent is the line at infinity, we have:

Figure 29: Given a parabola and two tangents to it. Through the tangent point we draw 
parallels to the other line; these meet at̊ the diameter through the common point.

N  ̊ h e n  one of the tangents is the x-axis, we see the relationship.
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Chapter 5

Perspective and projection

With the emergence of projective geometry at ̊the beginning of the 19th century, the 
principle of projectivity in particular became decisive, and this type of geometry is 
today known by this name, projective geometry. Although at ̊that time there were 
other designations, such ̊as synthetic geometry and others, this designation remained. 
Much of the reason for this was Poncelet's fundamental work, which was called 
projective properties.
In Poncelet's work, the concept of mapping became central; a concept that would ̊prove 
to be one of  most important concepts in mathematics. Towards the end of ̊the 1800s, 
the right way was found ̊ t o ̊ algebraize geometry in ̊ what became linear algebra. With 
this, the various geometric representations can be performed uniformly and easily. 
Such transformations form the basis of all visualization of geometric objects, 
and changes of these in space.
It is beyond v ̊ a r frame a ̊g ̊a into p ̊a these transformations, but will later see something p ̊a 
the metric principles underlying algebra. V ̊ a r main concern is the geometric images 
that s ådan .

5.1 conic section in perspective
65. The development of the projective principles g  ̊a  r very broad s ̊ a of  ̊a  r 
intention here is not å  g  ̊ a into p ̊ a this in particular detail. What we will see on ̊ a 
are certain basic images, images that also å belong within morphology. One basic 
image has å to do with what we mean by perspective.

66. Just as Desargues' theorem describes two triangles in perspective, here we will 
see ̊ two conic sections in perspective. We can say that Desargues configuration as a 
whole can be differentiated into two triangles, perspective point and perspective 
line. In ̊ the same ẘay, we will here arrive at an image that carries the perspective in 
it, but considered as an image it is part of the morphological landscape.

81
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Figure 5.1: Tek

67. The most common form of conic section in perspective is a circle seen from the 
side. A cup seen from above is circular, but seen from the side we see an ellipse 
where all parts are pressed together equally. This relationship between the ellipse 
and the circle makes it possible to easily ̊derive the equation for the ellipse from the 
equation for the circle.
68. In purely geometric terms, we can also  ̊specify this change in shape. We have 
then given the circle, and a diameter in it. Normally on̊ the diameter we draw lines, 
and these meet the circle at points. An ellipse with the diameter as its axis divides 
all the chords in the circle equally. This is shown by the fact that if we connect two 
points on̊ a the circle with a line, and the two corresponding points on̊ a the ellipse 
with a line, then these will meet on̊ a the axis.

Figure 30: Given a circle, a diameter, and an ellipse with the diameter as the axis. 
We erect two normals on̊ the axis, and where these meet the circle or ellipse, we 
draw lines that meet on̊ the common axis.

The ellipse here is a perspective image of the circle.
69. We can use this relationship to ̊construct the ellipse in perspective. We have 
then given the circle, and a point p̊ a the ellipse. Through this point we drop a 
normal p̊ to the axis. We raise another normal p̊ to the axis, and through the 
intersection of the two normals with the circle we draw a line that meets the 
axis. From the point, we draw a new line to the point of the ellipse, and where 
this meets the second normal, we have a new point p̊ a the ellipse. By ̊a varying 
the normal, all the points p̊ a the ellipse appear.

70. Another type of perspective is that we see things reduced in̊ distance. Here we 
have a similarity mapping. We imagine two similar ellipses and their two common 
tangents meeting at a perspective point. We then have the following relationship:



5.1. CONIC SECTION IN 
PERSPECTIVE

83

Figure 5.2: Variants of perspective
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Figure 5.3: Perspective image

Figure 31: Given two equilateral ellipses in perspective. We draw two lines from 
the perspective point, and lines through the points p̊ a each, will be parallel.

As above, we can construct an enlarged ellipse from a given perspective point, 
and a given point p̊ of the new ellipse.
71. We can noẘ a realize that the last image also  ̊a has a different axis. If we 
draw lines on̊ the opposite side, we will see that matching lines meet on̊line between 
the ellipses. W  ̊ h e n  the ellipses intersect, this perspective line will go̊ through the 
intersection points. We are not ̊dealing here with an actual similarity mapping, the 
ellipse is also reversed.
72. In the last depiction, we are a˚̊ dealing with b  ̊ a perspective point and a 
perspective line. This is the general case, and in̊ this way there is always a 
continuous mapping from one conic section to another. This is based on the 
general geometric theorem:

Figure 32. Given two conic sections, a diagonal between them, two joint tangents to 
these and a perspective point. Through the perspective point we draw two lines, 
and where these intersect the conic sections we draw diagonals, and these will meet 
on̊ the diagonal between the conic sections.

We call this image the perspective view. Lines between two intersections of conic 
sections are called diagonals. Similarly, we call the lines between intersection 
points formed by a conic section and a double line. Later on, we will use the term 
common points for points formed between common tangents.

73. From this, we can construct a general image of a conic section n  ̊ a r  we 
have given the conic section to be imaged, the perspective point, the perspective line,
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Figure 5.4: Perspective construction

and a point p̊ a the new conic section. In fig.5.4 we have given the conic section 
a, the perspective point P , the line l and the point B p̊ a the new conic section b. 
If ̊a draws the line p, we find the point A that is in perspective to B. We draw a 
new line p' that gives A' p̊ a a, and we will find the perspective point B' p å
b. We draw a line AA' and this gives the point L' p̊ a l. We draw s̊ a L'B, and 
where this meets p' we have B'. This is how we continue to find the image b of 
a.

74. The different perspective variants f  ̊ a r e  all based on this basic image. (Fig. 
5.2) In translation we have n  ̊ a r  b  ̊ a d e  perspective point and perspective line 
are at infinity, while in similarity mapping only the perspective line is at 
infinity. W h e n  ̊ the perspective point is at infinity and the perspective line is the polar 
to this, we have compression. Mirroring also occurs  ̊a with a perspective point at 
infinity, but here the perspective line is normally p̊ a the lines from the perspective 
point, and a point p̊ a the new conic section is as far from this line as the 
corresponding p̊ a the original.
75. Projective geometry is in its essence a continuation of the starting point of 
conic section theory, and we realize that the image we have here can be regarded as 
a spatial phenomenon, where the conic sections are formed by different sections of 
the plane. Let's take a closer look at̊ this.
76. We imagine a cone and cut across this cone with two planes. This results in 
two cone sections, but we  ̊also  ̊ h a v e  a line formed between the two planes. This 
line will necessarily pass̊ through two points of intersection between the conic 
sections. We therefore call this line a diagonal to the two cone intersections. The 
vertex p̊ of the cone can be called a perspective point. In the image we have created, 
we add a new plane through the perspective point. This plane
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will cut the cone in two lines from this point, and it will also  ̊ cut the other two 
planes in two lines. The three lines formed will then meet at the same point. From 
this realizes the perspective theorem.
77. We have already seen several variations of the image, and we will look at ̊a few 
more. By ̊letting the two conic sections approach each other, we can eventually let 
them have common tangent points with the line. Here, the two conic sections will 
also  ̊a tangent to each other at two points, and the diagonal between them will be the 
line between the two tangent points. For both conic sections, the diagonal and the 
perspective point then become a pole and polar, and we can call these a common 
pole and common polar for two conic sections that are tangent to each other at two 
points.

Figure 33. Given two conic sections that are doubly tangent to each other, and a 
common diagonal, two common tangents and a common pole. Two lines through 
the common pole intersect the conic sections at two points each, and lines through 
these points will meet at t̊he common pole of the conic sections.

This theorem is further specialized into the extended LaHire theorem n  å r  the two 
conic sections fall the same, and we f  ˚a r  the ellipse image of a circle n  ˚a r  the 
perspective point is at infinity.
78. A particular shape arises ̊ ar n ̊ a r the two lines across the conic sections g ̊  
a r towards the tangents. As they coincide with these, the diagonals between 
these and the conic sections become the poles of the perspective point.

Figure 34. Given two conic sections in perspective. Then the poles of the perspective 
point with respect to ̊the conic sections will meet on ̊the diagonal between them.

Here we can also  ̊ talk about the lines between the tangent points instead of 
polars, because the perspective point has lost its significance in the configuration 
(Fig. 5.5).

79. The two cone intersections between the lines can also  ̊be positioned so that
they intersect at four points. It is then possible ̊ to draw as many as six diagonals
between them. In a concrete context, however, only two of these are significant,
and we will be able to see which by ̊ looking at the diagonals that emerge from
different planes. We will later see that there are also  ̊a morphological reasons for
this, but in this context it is essential that we become aware̊ a that we can form two
different diagonals by ̊a drawing lines from the perspective point.
80. By ̊drawing lines through the perspective point, and finding lines through the
intersections with the conic sections, we can also  ̊ find two diagonals n  ̊ w h e r e
the conic sections only intersect at two points, and n  ̊ w h e r e  they do not
intersect at all. For the time being, we can define the diagonals ̊in this way  ̊ a n d  n  ̊
where they do not .
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Figure 5.5: Perspective lines as tangents

81. An important perspec- tive transition is ̊to find a circle that is per- spective
to a given conic section. In this way, problems related to conic sections can be
transferred to circle problems, and once  ̊they have been solved here, they can be
returned to the conic section. F̊or example, the classical problem of̊ finding the
intersection between a line and a conic section given by five points can be ̊solved in this
way. (This problem can also  ̊ be solved in̊ a number of other ways  ̊ and the
applicability of various theorems will be shown here).

82. If a conic section is given by five points, we can choose any circle through two
of the points as a perspective circle. We then already have the percentile line
between them, and to ̊ find the perspective line we use a specialization of the
perspective approach above. We add a tangent to the key intersection in one of the
points (Construction-.) that is not shared with  circle. Where this tangent intersects
the perceptive line, we draw a tangent to the circle. The two tangent points will then
lie on̊line through the perspective point. We repeat the process and find the
perspective point.

5.2 Dual perspective
83. We have created perspective images of conic sections by å imaging each 
point on ̊ a conic section on ̊ a another. In dual perspective, we transfer all lines p 
å one conic section p ̊ a the lines to another. The considerations we have made p 
å far become visually clear w h e n  ̊we imagine them in space. In the dual 

case, this is not s ̊ a clear, and we must ̊ a make purely ideal considerations.

84. The fundamental theorem for dual perspective is formed completely dual to the 
perspective theorem.
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Figure 5.6: Dual perspective

Figure 35. Given two conic sections and a diagonal to these. From two points on̊ the 
diagonal, we draw tangents to the conic sections, and through the intersections 
between these, we can draw lines that go  ̊through a perspective point to the conic 
sections.

We call this the dual perspective approach.

85. A dual perspective is given by a conic section, a perspective line, the 
perspective point and a tangent to̊ the new image. While we started the 
perspective line to ̊find a perspective image, here we start  the perspective line. 
We then follow ̊a completely dual process to the one described, and an envelope 
image for the original conic section is  ̊created.

5.3 Projection
86. Projection is in̊ a sense a repeated perspective. That is to say, an image is 
repeated; that we find a new perspective from an image. This second image is n̊ 
a projection of the first, and it differs from pure perspective.

87. We can define projection for entire geometric images, but we see the principle 
more simply when mapping a line onto̊ another line. In this mapping there is no new 
shape, a line remains a line. However, we can identify the individual points from 
the image with the points p̊ of the original image. We say that those points correlate 
that have a common line through the perspective point.

88. If we repeat n̊ a this depiction by selecting a new perspective point and a new 
line, then all the points p̊ a will be depicted again. These new points are not
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Figure 5.7: Projection

are not perspective to the first anymore, we do not find any common point 
connecting correlated points p̊ a the two lines. Here we say that the points p̊ of the 
last line are a projection of the first line.

89. However, i̊t turns out that the connecting lines between correlated points all lie 
on ̊ a conic section. This is a definition of ̊ a conic section in projective geometry. In 
morphological geometry we do not have this starting point for conic sections; here 
we must ̊ show that what emerges must ̊ be a conic section based on the geometric images 
we develop.

90. In what appears above, the Brianchon theorem is present. We first arrange some 
p ̊ a order above. We start with a line a, and project its points to the lines b and c 
above the points P and Q. The fact that we make a perspective both ways is 
equivalent to repeated perspective. We choose a point A p ̊ a a, and this gives the 
points B and b, and C p ̊ a c. Through the points P and Q g  ̊the lines p and
q. The connecting line r between B and C should  ̊a lie on̊ a conic section. W  ̊ h e n  we
move A we realize that certain lines m̊ a belong to the lines in the projection. W  ̊
h e n  A meets the line b, a line from here to B will belong to the conic section.

91. Thus we see that Brianchon's theorem justifies that correlated points lie on̊ a
conic section. Conversely, i f  ̊ we define a conic section based on correlated
points, then we can justify Brianchon's theorem p̊ in the way we have seen.

92. We can also  ̊a do the dual construction; here we have lines through a point that
are depicted as lines through another point via a line. We see from Figure 5.8 that
the lines bn are perspective to the lines an. We repeat this and then the lines cn
become perspective to the lines bn. The lines an and cn are n̊ a in projection through
the points A and C p̊ a the conic section that mediates the projections. Integer
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Figure 5.8: Dual projection

Based on the method̊ above, we can justify that we have  ̊a conic section in Pascal's 
theorem.

5.4 Projections as group
93. What happens if we go  ̊further, and let the points we have found be depicted on̊ 
yet another new line? Then it turns out that we are still ̊ dealing with a projection; a 
projection of a projection is still a projection. Projections form p̊ a this way  ̊ a t e  a 
group, that is, we can always find a projection corresponding to the compositions 
of two.
94. These conditions are clearly evident in the algebraic methods associated with 
projective geometry. Here the elements are expressed by s  ̊ aka l  projective 
coordinates, which are vectors with three elements. A projection is expressed here 
as the result of the vector multiplied by a matrix. Repeated matrix multiplication 
still results in a matrix, and thus the group property appears.
95. This group property can also be shown  ̊ by the preservation of the so -ca l l ed  ̊
two-belt relationship 1. It can be shown that this applies to a perspective, and that it

1 N  ̊ a r  points are transferred perspectively from one line to another, all distances between 
the points are changed, but a certain ratio is  ̊ ar;  the double ratio. I f  ̊four points A1, A2, A3 

and A4 p  ̊a a line a, are transferred to points B1, B2, B3 and B4 p  ̊a line b, then the distance 
from A1 to A2, divided p  ̊a by the distance from A2 to A3, multiplied by the distance from 
A3 to A4, and finally divided p  ̊a the distance from A4 to A1 will be the same size as that 
between the points p  ̊a b.

A1A2 - A3A4= B1B2 - B3B4 (5.1)
A2A3 - A4A1 B2B3 - B4B1
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Figure 5.9: The projection theorem

therefore also å applies in a projection. Therefore it applies to a repeated projection. 
This means that we also å have the following metric theorem:

Metric law 11. Given a conic section, and two tangents a and b to it. Another four 
tangents transfer points from line a to line b. Then the double ratio between the 
points p ̊a of the two lines will be the same.

By ̊moving the keys in ̊different ways ̊ we can get ̊many special variations of 
this. We ̊ w o n 't go into ̊this here, but some tasks are given.

96. We can also ̊ a justify the group property of projections purely geometrically. 
We then use the following extension of Brianchon's theorem.

Figure 36. Given two conic sections that do not intersect, with two common outer 
tangents. We add a point p ̊to each of the tangents, and from these points we draw 
tangents to the conic sections. These intersect at two points whose common line g  ̊
passes through the inner common point between the conic sections (Fig. 5.9).

We call this the dual projection theorem. The image g ̊ a r over to Brianchon's 
theorem n ˚a r one of the conic sections g ˚a r together into point pairs.
97. We study figure.5.10 to s̊ee how the above theorem continues to project. Here we 
have three lines a, b and c. From the point P we draw the line p, and it leads the 
point A p å the line a, to the point B p å the line b. We add s å a tangent q p å the 
ellipse Q, and this leads B to the point C p ̊a the line c. This compound operation 
results in the point A g  ̊ a r  to the point C. However, this can be done by the 
tangent r p ̊ to the ellipse R. But the formation of the lines r p ̊ in this way is an 
envelope construction of R based on the dual projection theorem. This shows 
that a combination of a perspective image and a projection becomes a new 
projection.
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Figure 5.10: Projection

Figure 5.11: The projection theorem

98. We can make the same considerations in the dual case. In this case, we use an 
extension of Pascal's theorem:

Figure 37. Given two conic sections that intersect at four points. We draw lines 
through two of the intersections, and these intersect each of the two conic sections 
at a further point. We draw lines through the points of intersection at ̊ each of the 
conic sections, and the two lines then meet at ̊the diagonal between the other points 
of intersection of the conic sections.

We call this image the projection theorem. we justify n ̊ a this projection 
completely dually to the presentation above.
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Figure 5.12: Line projection

99. The reason we call the theorem above the projection sentence, and the first the dual 
projection theorem is that we are used to ̊calling the line images dual. We have 
also ůsed this principle for ̊ naming t̊he perspective sentences.

100.We can see in Fig.5.12 how the dual proceeds. Line p moves about P , and these 
are projected to lines q about Q via the conic section a. Furthermore, the lines q are 
projected to the lines r through R via the line b. We see n ̊ a that the lines p can be 
projected directly to the lines r via the conic section c. Thus we see again that a 
combination of a projection and a perspective is a new projection. (The line QR that 
hits the intersection of the two conic sections is not drawn in because it does not 
play a role in the construction.)2

101.In total, we have looked at ̊ four different sentences in this context. These are the 
perspective theorem and the dual perspective sentence, and the projection sentence 
and the dual projection theorem. As previously stated, these are purely 
phenomenological, as given. But with these as a starting point, we have been able to 
determine the other images and various relationships. We shall continue along this 
path and see how new general images å r i se that explain new relationships.

2That a direct combination of two projections gives a new projection can also  ̊be shown 
geometrically. This presupposes a theorem that lies outside the ones we are dealing with. 
The theorem is: Given three conic sections A, B and C with three common points. Two and 
two of these have an additional common point that we call AB, AC and BC. We draw a line 
through AB, and where the line hits A we draw the line to AC, and where it hits C we draw 
the line to BC. The two lines then meet a t  ̊a C. Thistheorem is also  å specialization of the 
third degree theorem.
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Chapter 6 Imaginary 

elements

A decisive step in arithmetic and algebra was taken when̊ the so-ca l led  imaginary 
numbers were taken  ̊seriously. When solving the second-degree equation, we had 
encountered̊ a solution with a negative number under the rat sign. It was felt that these 
numbers had no meaning; there are no numbers that multiplied by themselves 
become negative. These solutions were therefore called illegitimate or imaginary, 
and were̊ generally discarded. S̊ a the time was ripe enough to introduce a symbol i, 
which when multiplied by itself becomes -1. It turned out s̊ a that expressions 
containing this element could also  ̊a be processed, and calculation rules for this were 
developed. Even though the imaginary numbers could not be imagined, abstract 
rules were developed that enabled them to be processed nonetheless.
Poncelet wanted to apply this way of thinking ̊ ate also  ̊a in geometry. In̊ the same 
way  ̊ that algebra treated unreal elements, and eventually regarded them as self-
evident in an extended number system, he would also  ̊treat an extended geometry that 
also  ̊ included imaginary elements. Just as a second-degree equation always has two 
solutions w h e n  ̊one also  ̊a includes com- plex solutions, so also  ̊a two circles also  ̊a 
always have two common points, he believed. Two circles that intersect have 
two real points in common, at the tan- gering the points coincide, and w h e n  ̊
the circles do not intersect they have two imaginary points in common.
As an extension of this, Poncelet asserted the so-cal led  ̊principle of continuity, a 

principle that Carnot had already applied. The essence of this principle is that 
everything that exists in a geometric image continues ̊ to be there even if the 
image changes. For example, if we have two conic sections that intersect each 
other at four points, they will always do so regardless of their position. The 
four points of intersection are all real n  ̊ a r  the conic sections g  ̊ a r  completely 
above each other. N  ̊ a r  they move away from each other, they can f̊ have two 
real intersections, and then two of the intersections will be imaginary. N  ̊ a r  the 
conic sections lie completely

95
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Figure 6.1: Poncelet outside 

each other, all four points become imaginary.
It turned out that it was not as̊ easy ̊to draw in imaginary geometric elements as it 
had been ̊ to introduce imaginary numbers. Several people claimed that such 
elements do not exist; i f  ̊two crescents do not intersect, then one cannot conceive 
of any kind of invisible points somewhere that one cannot see. This view was 
originally put forward by Cauchy, and was repeated by others. However, 
several others had a different view, such as Von Staudt. We will come back to 
these considerations, but first we will look at̊ how the assumption of imaginary 
elements works.

6.1 Imaginary points
102. The introduction of the circle points is justified in̊ a similar w a y  ̊ as the
inclusion of elements in infinity. Although these do not appear in the
configurations, they have an effect in what we have before us. Many connections in
geometry are explained by the fact that what confronts us in reality is connected in̊ 
an imaginary way. To immediately ̊a f̊ a this clearly, we will see p̊ a an example
related to circles. Furthermore, we will look at̊ how circles can be understood ̊ as
specific conic sections based on imaginary elements.
103. We begin with a central circular statement.

Figure 38. Given three circles that intersect each other mutually. Through the 
points of intersection of two and two of them we draw diagonals, and these three 
will meet at the same point. (Fig.6.2)

This theorem has several implications that we will see in due course. We call it 
the tree circle theorem.
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Figure 6.2: Circle sentences

104. We can vary the three-circle set as an image by c̊hanging the position and 
size o̊f the circles. Two of the circles may then no longer . It turns out that the 
common diagonal of these circles can still exist as a real element. We approach 
this by the following consideration: Given two circles that than .̊  We let a third  
circle intersect the two, and find the diagonals between this and the two. The 
diagonals will meet on ̊ a the diagonal between the first two from the theorem 
above. If we place a new circle over the two original circles, we can find two 
new diagonals that meet on ̊ the diagonal between them. We thus have two points 
on ̊ this diagonal, and can draw it without ̊ using the intersection points. W h e n ˚ 
we do this, we see that the diagonal g  ̊passes through these points.
105. We can perform the same construction by s̊tarting with two circles that do 
not intersect. By ̊ having new circles intersecting this one, we can find points on ̊ their 
common diagonal just as above, and we can thereby draw the diagonal. We can 
confirm this by f̊inding many points on ̊ the diagonal.
106. What we have here is an example of ̊ the principle of continuity; what 
applies in the real case also applies ẘ h e n t̊he image is changed. In the latter 
case, however, the intersections between the circles have disappeared, but we say n ̊ a 
that they have become imaginary. In the abstract, we always say the same thing: 
two circles have two common points and a common diagonal.

6.2 Circles
107. By ̊ considering imaginary points, we will see that the circle can be
justified in̊ a similar way  ̊as parallel lines. Yet  ̊a we have not established the circle
as a geometric element; the basic definition
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Figure 6.3: Circle theorem

of the circle is basically metric; it is the geometric location of all points that are 
equidistant from a given circle. How is it determined geometrically? The other 
conic sections can also ̊ a be determined metrically, but we have seen that they also ̊  
a appear purely geometrically, and that they are determined as distinct by their 
relation to the line at infinity. What about ̊the circle, can it also ̊ arise ̊ from purely 
geometrical considerations? This is the question ̊we will try to ̊answer.
108. The first thing we can realize is that the circle differs from the other
conic sections in that two circles can have a maximum of two intersection
points, while the other conic sections can have four intersection points with
each other. This applies to b  ̊ a d e  ellipses, parabolas and hyperbolas, and also  ̊a the
conic sections' intersection with circles. But the conic sections can also  ̊have fewer
points of intersection; i f  ̊ they only intersect with each  ̊ other, they have two
points of intersection, and if they are completely outside each other, we see no
common points. We will examine the various possibilities in more detail later, but
intuitively see that two conic sections generally have four points of intersection
with each other, some of which may have collapsed or become imaginary.

109. If we think n̊ a the circle as a special conic section and find that two circles
never have more than two intersection points in common, then it is natural ̊to ask:
where have the other intersection points gone? Since we cannot find more than two
real intersection points,̊ two of them must be imaginary, but how are we to
understand ̊ them? Here we are helped̊ by a particular theorem that shows us the
relation of the circle to parallel lines.

Figure 39. Given two intersecting circles and a line through each of the intersections. 
The circles are each intersected at a pair of points by these lines, and lines through the 
points become parallel (Fig. 6.3).
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Figure 6.4: Joint diagonal

We call this theorem the parallel theorem.

110. This relationship does not exist for conic sections in general. But the projection 
theorem (Image ??) from the previous chapter describes something similar. Here we 
have two conic sections and draw lines through two of the intersections. These meet 
the conic sections at two points each, and the lines through these are not parallel but 
meet on ̊ the diagonal through the other points.
111. We let n ̊ a the two conic sections intersect at just two points. As above, we 
draw lines through the points of intersection and find the points of intersection with the 
ellipses, and the lines through these meet at a point. We cannot draw a diagonal in 
this case, but if we repeat the process, we will see that all the points formed p ̊  a 
this m å t e n lie p ̊ a a line outside the ellipses. This is n ̊ a a diagonal through the 
imaginary intersections of the ellipses.

112. If we try p ̊ a this m å t e n å to find the diagonal between two similar 
ellipses,i.e. two ellipses of the same shape and direction, we will not find it because the
lines through the intersection points are parallel. The other two points of
intersection between these will then lie on̊ a line at infinity, and the line at
infinity is then a diagonal between similar ellipses.
113. If we look again at̊ a the situation with the circles, where the lines also  ̊ a
become parallel, we realize that the diagonal between the two circles also  ̊a lies at
infinity. This is a natural consequence of what we have seen, because all circles are
uniform with each other. This  ̊means that two circles always intersect at two points
at infinity, and that the line at infinity is a diagonal between them.
114. I f  ̊all circles have the line at infinity as their common diagonal, then a little
consideration tells us that the circles m̊ have the same two imaginary points in
common.
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We realize this by ̊considering that if three circles are to have a common diagonal, 
then they cannot have more than two points in common. These imaginary points in 
the infinite that all the circles have in common are called the circle points.

115. We have thus determined circles to ̊ be conic sections that g  ̊ a r  through two
specific points in infinity. From this we can see how conic section theorems become
circle theorems by ̊ adding points as circle points, and vice versa, that circle
theorems can be generalized to conic section theorems where instead of circles we have
conic sections through the same points. In this way, a number of scattered
theorems can be seen in a common light

116. This methodology has been the subject of persistent controversy; some have
claimed its validity outright, while others have been much more critical. We will
look at̊ these issues̊ in some detail, but first look at̊ some immediate consequences of
the relationship.

6.3 Tree conic section theorem
117. In the three-circle theorem, we are ̊dealing with three circles through the circle 
points, and three diagonals between two and two of these meet at the same point. If 
we let n ̊a the circle points instead be two arbitrary  ̊points, these will be common to 
three arbitrary  ̊conic sections, and three diagonals will meet t̊he same point.

Figure 40. Given three conic sections through two common points. The diagonals 
formed between the other intersections of the conic sections will then meet at the 
same point.

We'll call it the three-cone intersection theorem, and we'll see that it has many 
important applications. 1

118. From the relatively special circle theorem, we have thus found a theorem
of a far more general character, and it contains several theorems as possibilities.
W h e n  ̊one of the conic sections stretches out and becomes a pair of lines, we  ̊
have the above projection theorem, and w h e n  ̊ two conic sections become two
pairs of lines, we ̊have. Pascal's theorem.

119. Instead of ̊letting the two points common to the three cone intersections be
circle points, we let the points between only two of them be circle points. Then
f  ̊we have two

1This theorem also appears  ̊a as an example from algebraic geometry. Given two third-degree 
curves f (x, y)= 0 and g(x, y)= 0, intersect at nine points. A linear combination h(x, y)= a 
f (x, y)+ b g(x, y) is also  ̊a third-degree curve, and it m  ̊a also  ̊a be 0 at the common points 
between f and g. W h e n  ̊ each of the third degree curves degenerates to a conic section and a 
line, we have the triple conic section theorem.
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Figure 6.5: Three conic section

Figure 6.6: General parallel theorem

circles, and the third conic section g  ̊ a r  through the intersection points of the 
circles. The diagonal between the two circles is n ̊a the line at infinity, and the 
diagonals between the conic section and the circles m ̊a meet p ̊a the diagonal between 
the circle, thus becoming parallel.

Figure 41. Given two intersecting circles and a conic section through the 
intersections. The diagonals between the conic section and the two circles are then 
parallel (Fig).

This is an important theorem for constructions of different kinds, some of which 
are given as tasks.

120. The statement above provides a surprising connection to the radius of 
curvature of a conic section. The connection is found by a modification of the 
above theorem. Here,  ̊the two points of intersection between the circles merge into 
one so that it becomes
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Figure 6.7: Curvature

a point and the tangent between them. The conic section that g o e s  ̊ through the 
coinciding points will also  ̊touch the circles here and we have:

Figure 42. Given a conic section, and two circles that are tangent to this at̊ a the 
same place, and that also  ̊a intersect the conic section. The diagonals between the 
circle and the conic section are then parallel.

121. The radius of curvature of a conic section at a given point is defined as the 
radius of the circle that has a triple point in common with the conic section here. 
If we have n̊ a given circles that are tangent at a given point and vary this, then 
the diagonal between this circle and the conic section will have the same 
direction all the time. If we change n̊ a the circle so that the diagonal also  ̊ a g  ̊passes 
through the tangent point, then we have triple tangent and the correct circle. We can 
find that direction by an arbitrary  ̊circle, and from there we can find the circle of 
curvature (Fig. 6.7).

6.4 General considerations
122. W̊e already see that by ̊ generalizing circle points, and moving back and forth 
between imaginary and real points, theorems can be brought together in̊ the most 
surprising ways.  Å question ̊ that arises ̊is: is this method rigorous enough; can we 
talk about imaginary elements that we don't ̊see in the same w a y  as real ones, and can 
we generalize circle points as we have done?

123. The fact that the imaginary elements were not originally accepted on̊ an 
equal footing with imaginary numbers is due in the first place to̊ a the fact that 
the numbers are more abstract in character than the elements of geometry. We are 
used to ̊a treating numbers abstractly in algebra, and here we are not dependent ̊a 
on imagining a specific size
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when processing the various expressions. This is different in geometry, as 
geometry is basically drawing and viewing. You thus associate the geometric 
elements with what you are looking at. When̊  some elements become ̊ imaginary, 
they no longer exist in the view, and it is difficult ̊ to relate to such elements in̊ the 
same w a y  ̊as to imaginary numbers.
124. This problem is best ̊ a r  in one form or another ̊as long as you think of the 
geometry as what you are looking at. If one thinks of geometry as more 
comprehensive, things are different. Geometry then appears to us in̊ various ways, of 
which geometric images are the first. Here we draw and construct, and form an 
overall picture of the situation. By using equations, which we will not  ̊ g o  into̊ 
further here, we can also treat  ̊the imaginary elements directly. What we gain here is 
lost in that we no longer have an image in front of us. Geometry thus expresses 
itself in̊ a double way, in̊ a visual image on the one hand, in̊ an algebraic way on the 
other.
125. The third way  ̊ to  do this is ̊ to treat geometry abstractly in purely conceptual 
terms. At̊ this level  ̊it is then the case that, for example, two circles always have two 
common points. We can denote this symbolically by S1   S(2)= P1, P2 . These points 
can be real, in which case we can view them in a geometric image. If they are 
tangent, they coincide, and i f  ̊ the circles do not intersect, the points become 
imaginary. Then the points will not appear in the image. The image, or view, thus  ̊
only covers part of the geometry, the imaginary points are  ̊not dealt with here. The 
same applies to the elements in the infinite, which are also not  ̊included in the view.
126. The elements of infinity have often been called "ideal points", i. e.  ̊a points one 
must̊. In̊ the same w a y  ̊one can consider the imaginary points, they are imagined and 
do not appear. This consideration is based on the fact that we see ̊the considered 
geometry as the real one, and in addition to these real elements we  ̊ h a v e  the ideal 
ones. However, if we consider the nature of the geometric elements, ̊we must say that all 
geometric elements are ideal. Some of these ideal elements we can imagine, 
others we can only think, but as we shall see, eventually we̊ have a kind of 
experience of. Only w h e n  ̊ it becomes clear that geometry is something more 
than meets the eye can we freely relate to it as a whole. We then do not seek 
any hidden elements, but say that the view gives us something, the rest  must̊ think and 
relate to indirectly. Other aspects emerge through algebraic treatment, and still 
others through abstract treatment. Thus ,  ̊ the ideas of geometry emerge through a 
multifaceted approach.
127. In visual geometry we therefore operate on̊ two levels  ̊ .  On̊ the one hand, we 
have the abstract whole or idea that is continuously active, on̊ the other hand, the 
perceived image that provides the image, but which always appears
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In particular. We cannot say that the real geometry is the abstract geometry, or that the 
real geometry is the perceived geometry; both sides belong together. By the abstract 
ideas we grasp something that applies to all forms, by the manifold views we 
experience the essence of geometry in its most manifold forms, we experience its 
breadth.
128. The second  ̊question is whether you can generalize the circle points. We cannot
do this immediately, but in o u r  ̊ treatment we do it differently, we assume
phenomenologically what emerges from the method, and from what emerges ̊ we
see what can be justified. W  ̊hen it comes to the conic section theorem above, we
leave it as the most general for the time being, and conclude from here to the tree
circle theorem and the other theorems we have found. We can continue along this
path; from circle theorems we can hypothetically assume the general theorems, and
infer other conditions.

6.5 Impact of the circle points
129. Two circles in perspective can also  ̊be understood ̊ as  in this perspective. In
the general considerations about conic sections in perspective, we ̊saw how matching
lines met on̊ one of the diagonals between the conic sections. W  ̊ h e n  we have two
circles in perspective then matching lines will either m  ̊ a t e s  on̊ the diagonal between
them, or they will be parallel. We realize the latter immediately because one of the
circles can be  ̊understood as a displacement of the other. From this we also  ̊see that
the circles have a common diagonal at infinity.
130. There is a generalization of two conic sections in perspective; we can have
three conic sections between two lines. Then three diagonals between two and two
of them will meet at the same point.

Figure 43. Given three conic sections between two lines. Then there are three 
diagonals between two and two of them meet at the same point.

131. This theorem can be moved in many directions. If one of the lines is at 
infinity, the conic sections will be parabolas, and then we have:

Figure 44. Given three parabolas that are tangent to the same line. Then there are 
three diagonals between two and two of them meet at the same point.

This can be transformed further, and we can also ̊ find more conditions for 
hyperboles.
132. We now ̊see what happens if two of the three conic sections between the two 
lines are circles. Then one diagonal can be the diagonal between the two circles, 
and the diagonals between the conic section and the circle will meet on ̊it. If  ̊ i s 
the diagonal between the circles, the line will be at infinity f  ̊ a r  vi:
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Figure 6.8: Circles and ellipses

Figure 45. Given two circles and a conic section lying between two lines, so that the 
conic section cuts across the circles. The diagonals between the conic section and the 
circles will then be parallel.

6.6 Monges theorem
133. We have g  ̊ a t t  one way; from general conic section theorems we have
found several special circle theorems. We will n̊ a  g  ̊ a r  the other way, and generalize a
circle theorem to ̊a see what is formed by this
134. Monge's theorem is a central circular theorem, and in̊way dual to the three-
circle theorem. It is not about intersections and diagonals between two circles, but
about common tangents and common points. The outer common tangents of two
circles meet at the outer common point two circles, and the inner tangents meet at
the inner common point. W  ̊ h e n  we have three circles, we form three common
points, and we have the relationship:

Figure 46. Given three circles and their three outer common points. These are 
located on ̊the same line.

The theorem is a well-known property of s ˚a k a l homology, or similarity 
consideration. It can also ̊ be applied to the appolonius construction.(Opp..)

135. However, the three inner common points of three circles do not lie on̊ a line,
but the line between two inner points always p a s s e s  ̊through one of the outer
common points.
136. A modification of Monge's theorem is  ̊ w h e n  one of the circles
approaches the others. The inner common points lie between this one and the
others, and when they are tangent we have:
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Figure 6.9: Monge's theorem

Figure 47. Given a circle that is tangent to two others. Then the line through the 
tangent points will g̊  a through a common point to the two circles.

From this theorem we can find circles that are tangent to two others.
137. If we  n̊ å regard the circles as special conic sections through the circle points, this 
leads to a theorem where we have three general conic sections through two 
points.

Figure 48. Given three conic sections through two common points. Then the outer tan 
repeats between two and two will meet in three common points located on̊  the same line.

138. It may be that we do not immediately see what further processing possibilities 
lie in this theorem. However, if we look at it more closely, we see that it is the dual 
of the theorem with three conic sections between two lines. Here we have three 
conic sections through two points, and we have three common points on ̊ a line, as 
opposed to three diagonals through the same point. Since we have developed 
different relationships around the three-line theorem, we can by å dualize find 
relationships here. We are not going to do this, but just point out ̊ a few key points.
139. A key transformation was that one of the conic sections in L3 became a pair of 
lines through the perspective point. What is the dual process for this? We imagine 
one of the conic sections through the pair of points as an ellipse that becomes 
increasingly narrow, but such that it always extends past the two points. As the 
ellipse collapses, it will appear as two points on ̊ a line through the starting points.
140. If we carry out n ̊ a this process in the image above, we will have two conic 
sections through two points, and two points p ̊ a the diagonal between them, and this 
gives the theorem:
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Figure 6.10: Specialization of general Monge

Figure 49. Given two conic sections, a diagonal through two of the points, and two 
points on̊ the diagonal. We draw tangents from the points to the conic sections, these 
form points, and a line here will meet at̊common point of the two conic sections.

From this, we can find common tangents to two conic sections if we have intersection points.

141. A further specialization appears w h e n  ̊the two points on̊ the lines coincide with 
the intersections of the conic sections:

Figure 50. Given two conic sections that intersect at two points. The tangents to 
each of the conic sections at these points form two points that are ̊aligned with a 
common point for the conic sections. (Fig.6.10)

6.7 Ordinary and projective circle
142. A l t h o u g h  ̊ we have found that circles as we know them can be 
understood ̊as conic sections that have common points at infinity, we have not yet  ̊
constructed the circles on this basis. We saẘ a earlier how the parabola arose by 
calculating the line at infinity and constructing parallel lines. We could already  ̊a 
construct the parabola w h e n  ̊we knew parallel lines, but is this enough w h e n  ̊
it comes to the circle? It isn't. Just as we cannot know what actual parallel 
lines are without a metric, we cannot know n  ̊when it comes to the circle. Just 
as in the consideration of Desargues' theorem we̊ a that we must̊ a have given two 
pairs of parallel lines in order ̊a to be able to say anything further about them, so 
must̊ a we have two circles in order ̊a to be able to say anything further definite.
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143. How do we get s̊ a from the generalized circle time the ordinal? This turns out ̊
a not to be possible without metric conditions, just as we cannot determine what 
two truly parallel lines are without metrics. In pure geometry we ̊have to define what 
we mean by a pair of parallel lines, and furthermore what parallelism in another 
direction is, w h e n  ̊we do not have the line at infinity. Nor do we have an ordinary 
circle because the imaginary points at infinity are not something we can really work 
with geometrically. When it comes to the geometric Euclidean image,  ̊ analysis 
cannot help us either; we do not know what orthogonal lines are without ̊ having 
learned it from the world. The peculiar thing turns out then, that the general 
geometric images we can realize, the Euclidean m̊ a we learn from the world around 
us.

6.8 Various basic images
144. If we reflect on the basic sentences we have found,  will see that we have 
three different conic section sentences. We have the generalized three-circle 
theorem where we find diagonals of three conic sections through two points. Then̊ we 
have seen̊ the generalized Munge's theorem, where three conic sections through two 
points had three common points on̊ the same line. Furthermore, we have the dual to 
this; namely, three conic sections that are tangent to two lines and have three 
common diagonals through the same point. However, we do not have the dual of 
the extended three-circle theorem, and this is given by.

Figure 51. Given two lines and three conic sections between them that do not intersect 
each other. Then the joint keys between them will give three joint points on̊ the same line.

We immediately see that this is a generalization of two conic sections in 
connection. This appears when  ̊ i s  one of the conic sections above g  ̊ i s  combined into 
a line.



Chapter 7

Focal point and guidance line

The focal points form the s̊ and say the other other kind of entrance to the conic 
sections. Until̊ now we have considered the conic sections as sections of a cone and as 
sections of a circle, but just as often, and by elementary definition, the conic section 
is considered from its focal points. The fact that the planetary orbits are ellipses 
with the sun one focal point points ̊to the centrality of the focal point. For a long 
time, planetary orbits were considered ̊ to be circular, or compositions of circular 
motions. This went back to the Greeks, who believed that the circle was the perfect 
shape, therefore  ̊ the celestial movements must be circular. We then have the 
remarkable fact that the focal point is closely linked to the circles, and yet in̊kind of 
polar way.

7.1 Imaginary keys
145. While circles are rooted in imaginary points, focal points are rooted in 
imaginary tangents. Imaginary tangents are completely dual to imaginary points, 
and just as imaginary points form real diagonals between conic sections, so do 
imaginary tangents form real common points between them.

146. To ̊find diagonals between two conic sections with only two trap points, we 
used the projection theorem (37). The dual construction is
å find the common point between two conic sections that g  ̊ a r  into each other so 
that we only have two common tangents. We can then use the dual projection 
theorem
(36) to ̊find the common point between them. We add points P and Q to̊ the outer 
tangents, find tangents from these to the conic sections, and lines between intersections 
will then g  ̊ a r  through the inner common point.
147. The two conic sections above have n̊ a two common imaginary tangents, which 
meet at a real point. We can apply this in̊ a number of  ̊ways, but the essential

109
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Figure 7.1: Kepler's victory over Mars

To express this, we have n  ̊  a r  the imaginary tangents g  ̊  a r  through the 
imaginary circle points at infinity. Then the remarkable thing happens: the 
common points become the common focal point for the conic sections. The focal points 
that play such a central role f  ̊ a r  thus an elementary interpretation:

Definition 5. The tangents of a conic section from the circle points meet at four 
points, which we call the focal points of the conic sections.

148. N  i̊ s  the definition st  i̊ s  as it st i̊ s ,  foremost i̊s the whole thing as 
abstract, but we will soon see the effects of this. We will again consider the dual 
projection theorem, but think of the picture in general terms. We let the n å P and 
Q p å lines be the circle points. The outer imaginary joint tangents then form a common 
focal point for the conic sections. In addition, the tangents to each of the other 
conic sections form a focal point for each of these. Finally, there are two 
tangents between the conic sections, which may well be real in the general case. 
We then have the image:

Figure 52. Given two cone sections with a common focal point, the other two focal 
points, and two common tangents to the cone sections. Then the common point 
between the two will be in ̊line with the focal points.

149. At this foremost ̊ ar the dual projection theorems in a completely new form. A 
variant of this is the simple image.

Figure 53. Given two cone sections with a common focal point that are tangent to 
each other. Then the tangent point will be in ̊line with the other focal points.

150. Parabolas in the same direction have a common focal point at infinity, which 
we will explain in more detail as we go along, and which gives a variant of the 
theorem above:
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Figure 7.2: Focal point

Figure 54. Given two parabolas with the same direction that are tangent to each 
other. In this case, the point of tangency will be ̊in line with the focal points of the 
parabola.

7.2 Like angles
151. Using the theorem of two tangent conic sections (53), we can show a key 
angular relationship to conic sections.

Metric law 12. The lines from the two focal points to a point on̊ the periphery of a 
conic section form equal angles with the tangent of the point.

If we have given a conic section c as shown in̊ a figure (7.3), we can always 
find a conic section b with both focal points equidistant from the tangent. From 
the symmetry, we see that the angles are equal.

152. We see here that from the definition of the focal point we can find metric 
properties in the same way that we found equations and other properties for the 
conic sections from Pascal's and Brianchon's theorems. We will̊ continue with this, 
and find key relationships related to lengths.
153. We noẘ start from the perspective theorem (32). Here we have two conic 
sections in perspective, two lines from the perspective point, and two diagonals 
between the lines and the conic sections that meet at̊ the perspective line. We let the 
common bars be the imaginary tangents through the circle points; the perspective 
point becomes the common focal points for the two conic sections, and we  ̊create 
the image:

Figure 55. Given two cone sections with a common focal point, and two lines 
through the focal point. Diagonals between the lines and the cone sections will then 
meet at̊ the diagonal between the cone sections.
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Figure 7.3: Equal angles

154. An immediate special variant is  ̊ w h e r e  the two lines merge into one:

Figure 56. Given two cone sections with a common focal point, and a line through 
the focal point. Tangents where the line meets the cone sections will meet on̊ the 
diagonal between the cone sections.

155. Before we go  ̊any further with̊ , we need to make one thing : for the circle, all
focal points coincide to one, and this is the center of the circle. We realize this by ̊
considering that the circle g  ̊ a r  through the focal points, and then the tangents
from these points to the circle will be the two tangents in the points. These meet in
a point, and this is the pole of the line at infinity, which we have previously
determined to be the center of the circle.

7.3 Metric relationships
156. The theorem we will use to ̊ find metric properties appears w h e n ̊ one of the 
conic sections in the image above (32) becomes a circle.

Figure 57. Given a conic section, one of the focal points and a circle with center in 
the focal point. We draw two lines through the focal point, and their diagonals with 
conic section and circle, will meet on ̊the diagonal between circle and conic section.

Since we know the circle, we can find properties of the conic section.

157. First we look at ̊ the relationship of the parabola to the focal point, and will 
find the theorem:
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Figure 7.4: Focal point circle

Metric law 13. From all points on̊ a parabola, the distances to the focal point and a 
specific line, the control line, are the same.

This is perhaps the most common phrase for parables.
158. To s̊how the theorem, we let the conic section in the image above (57) be a 
parabola, and we let the circle centered at the focal point tangent to the parabola. 
One of the lines from the focal point g  ̊passes through the point of tangency and the  
focal point, while the other is free. One line meets the parabola at infinity, and the 
line from here to the second point p ̊ of the parabola becomes parallel to the first 
line. We draw the diagonal between the circle and the lines, and the common 
tangent between the circle and the parabola, and these meet at a point. We then have 
the image p ̊ a fig.(7.5). Here we see that the distance from the focal point B to the 
point P is the same as the distance to a line s. Here s is the guiding line of the 
parabola and the theorem above is shown.

159. We shall n ̊ a generalize this to ̊a apply to the general relationship between the 
focal point of a conic section and the directrix. This is given by:

Metric law 14. From any point on ̊ a conic section, the ratio between the distance to 
the focal point and the distance to a specific line, the directrix, is constant.

This relationship is often used as an elementary definition of ̊a conic section 
because by ̊varying the constant, all conic sections are given. If the constant is 
less than 1, we have the ellipse, if it is equal to one we have the parabola, and if 
it is greater than one we have a hyperbola.
160. We make another modification to the circle-conic section theorem (57) for
to̊ arrive at this relationship. We have an ellipse and a circle with a center at 
the focal point, but we have let the two lines merge into one that is ̊ a r
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Figure 7.5: Focal point parabola

Figure 7.6: Ratio of ellipse

normally on̊ the longest axis of the ellipse, as  shown  ̊in the figure (7.6). Where the 
line meets the circle (A) and the ellipse (C) we add tangents, and these will meet on̊ the 
diagonal between the circle and the ellipse in D. The line AD meets the axis in F, 
which lies on̊ the normal s, the control line of the ellipse. We can see from the 
figure that BP is equal to BC which is equal to DE. N̊ a, the relationship between 
DE and EF is equal to the relationship between AB and BF, which is constant. 
This means that the ratio between BP and PQ is also  ̊a constant, and by ̊a varying 
the radius of the circle we have the metric ratio.

161. By ̊seeing that AD is a tangent to the ellipse, we realize that s is the polar 
the focal point. We can therefore define:

Definition 6. The guiding line of a conic section is the polar of the focal point 
with respect to̊ the conic section.
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Figure 7.7: Right angle

162. By ̊ a letting the circle decrease, the diagonal between the ellipse and the circle 
will p̊, and as the circle remains inside the ellipse, the diagonal will g̊ a through imaginary 
common points, and remain p̊ a on the outside of the two. This line can be found by ̊a 
drawing lines through the focal point, and finding diagonals between these and the 
circle and ellipse.

163. We will then̊ make a further change, and allow the circle to become smaller and 
smaller so that it eventually coincides with the focal point. This is not immediately 
feasible because the intersections between the double line and the circle disappear. 
However, we realize that in the limiting case, this diagonal will become a bisector 
for the angle between the two lines through the focal point. This bisector will then 
meet the diagonal between the double line and the ellipse p̊ a the diagonal outside 
the ellipse. The diagonal is n̊ a become the guiding line of the ellipse.

Figure 58. Given an ellipse and a focal point, and a double line through the focal point. 
The diagonal between the double line and the bisector of the double line will then 
always meet on̊ the same line, which is the guiding line of the ellipse.

164. This can be further condensed into a familiar phrase.

Figure 59. Given an ellipse, a focal point, and the guiding line in relation to this 
focal point. We draw a line through the focal point, and a normal to this at the 
focal point. This normal will then meet the tangents to the ellipse where it is 
intersected by the first line.

From these sentences we can also  ̊find metric sentences.
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165. We see from this that the definition of the focal point as the intersection of 
two tangents from the circle points agrees with other definitions of the conic 
sections. We will later see that  ̊other definitions based on the focal points can also be  ̊
d e d u c e d  quite directly from the images that arise ̊ .



Chapter 8

Absolute conic section

166. During ̊ the 19th century, projective geometry emerged, and eventually also ån
algebraic understanding o̊f it. At the same time, another type of geometry emerged:
the so -ca l l ed n̊on-Euclidean geometry developed by Laboshevki and Bolay. Even ˚
this geometry had its origins in problems with parallel lines. These directions found a
kind of unity in that Cayley continued with the metric considerations made by
Poncelet. W̊hile Poncelet made the connection between metric geometry and
projective geometry by i̊ntroducing the circle points, this was generalized by Arthur
Cayley who not only linked metrics to the circle points, but to an arbitrary c̊onic
section; the s o - c a l l e d absolute conic section. This consideration ålso plays å major role
in pure genometry. The imaginary enters here in a different way, and one  ̊g  e t s an
intuitive understanding o̊f the nature of Euclidean geometry as a special  form of
geometry in general.

167. We shall primarily look åt the purely geometrical considerations connected
with this theme, and show how these arise naturally from the morphological
movements. To some extent we shall also å look at ̊ a the metric; to å deepen the
theme.

8.1 Salmon theorem and double tangent

168. The consideration will revolve around certain extensions of the theorems we
have seen so̊ far. We will form a synthesis of two and two of the three-cone carving
theorems, but we can also  ̊take Brianchon's theorem as a starting point, which gives
a ̊more immediate access to this.

169. We consider that the transition from Pascal's theorem to Pappo's theorem
occurred when the conic section in the configuration became two lines. We see n̊ 
a p̊ a the tangents in the hexagon in Brianchon's theorem, and ask n̊ a whether these can
be regarded as

117
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Figure 8.1: Solomon's theorem

degenerated cone cuts. This turns out ̊ to be the case, and we then  ̊ have three 
cone cuts that double-tangent a fourth.

Figure 60. Given a conic section, and three others that are tangent to this double 
between two and two of the conic sections, we find three diagonals, and these will 
meet at the same point.

We call the theorem Salmon's theorem because it is expressed explicitly in his 
book "Conic sections".

170. Here we become aware of ̊ a new significant element; we are  with direct 
relationships between the conic sections .̊ So ̊ far, points or lines have been 
included as connecting elements in the various images, while here the cone 
sections themselves are linked by double touch or tangent. In order to avoid ˚ 
misunderstandings å, we will briefly say that two cone sections are tangent to each 
other when  ̊they are doubly tangent to each other.

171. We will call the central conic section the primary conic section, and the other 
three secondary ones. We do this not to e̊mphasize any value for s ̊ a wide, but 
because they appear in this order.

172. Salmon's theorem is a synthesis of two three-conic section theorems. It one of 
the four central ones when the primary conic section collapses into a double point, 
and it becomes another when the primary section becomes a double line.

173. The dual of Salmon's theorem can also ˚be formed by exchanging the 
intersection and diagonals with common tangents and common points. Then we have 
the theorem.
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Figure 8.2: Dual Salmon

Figure 61. Given a conic section, and three others that are tangent to it. We find three 
pairs of joint keys for two and two conic sections, and these will lie on̊ the same line (Fig. 
8.2).

174. This theorem becomes the dual of the Salmon transformations.
175. If we leave the three conic sections in dual Salmon inside a fourth, but so that they 
do not touch each other, we will f ̊ a Pascal's theorem n ˚a r the three conic sections 
become increasingly narrower, and finally collapse into three line segments that appear 
as three pairs of points. This process is dual to that which takes place n ˚ a r 
Salmon's theorem g ˚a r over to Brinachon's theorem.
176. In ̊ the same way t̊hat Salmon's theorem applied in a double-point variant 
and a double-line variant, we can form the dual cases here.

Figure 62. Given three conic sections that are tangent to two lines. Then three 
diagonal points between them will lie on̊line.

N å r the outer conic section, double points are created år:

Figure 63. Given three conic sections through three points. Then three diagonal 
points between two and two of the conic sections will lie on ̊the same line.

This theorem becomes Monge's theorem n ˚w h e r e the two points become circle 
points.

Figure 64. Given three circles, and the outer common rod nets of two and two of the 
circles. Then the three common points of the tangents will lie on̊  the same line.

A number of other transformations can take place, and several of these are given as tasks 
under
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177. Before we see how this leads  ̊to m ̊ , let's turn our attention to the diagonals 
again. W h e n ˚two conic sections , it is possible to d̊raw a total of six diagonals. 
However, it is only two of these that are i̊mportant: the two diagonals that remain ˚ 
when t̊he two conic sections connected to the primary become two pairs of lines. Six 
such diagonals are formed, and they will meet three by three in four points. In each 
image, we will only be dealing with three diagonals a.˚
178. We thus have two main appearances of Salmon; in one case the secondary 
ones surround it, in the other they lie within it. We will soon see that each of these 
expressions can be differentiated into two different images.
179. Salmon can also b̊e metamorphosed in that one or more of the secondary 
cone sections appear specially. They can degenerate into one or two pairs of lines, 
and each of these will give rise to distinct images. W h e n ˚ the conic sections 
become two pairs of lines, we ˚h a v e , for example, a self-dual theorem that is a 
synthesis of Pascal's and Brianchon's.

Figure 65. Given two conic sections that are tangent to each other. On̊ the inner 
conic section we put on̊ each side a pair of tangents, and we find two pairs of points on̊ 
the outer one furthest from the inner one. Each pair of lines that meet also form  ̊
their own points, and we draw the line between them. Two diagonals between the 
pairs of points will then meet on̊ this line.

W h e n  ̊ the inner conic section becomes a pair of points, we have  ̊Pascal, 
and when the outer section becomes a pair of lines, we have Brianchon.

8.2 Absolute conic section
180. We shall n  ̊ a r  determine some properties of the conic sections from the
primary conic section that we n̊ a see p̊ a as the absolute. This f  ̊ a r  n̊ a role as the
determinant, and it will thus replace b  ̊ a d e  the line at infinity and the circle points. The
conic sections that are tangent to these are ̊regarded as circles in such a system, and
the properties of these circles are determined by this. We shall see how the
center of the circle is determined, and the properties associated with this.
181. Significant for these considerations are the transitions that result from the
secondary conic sections either coinciding with the primary or with each other. This
gives rise to  ̊ a r  generalization of common diagonal sets, and these play a major role.
182. We first see what happens w h e n  ̊one of the secondaries coincides with the
primary. We then keep the tangent points of this fixed, and let it s̊ a end.
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so that it approaches the primary. We then see that the diagonals between this and 
the other secondary gradually approach the common diagonals between these and 
the primary, and when the cone intersections  ̊ coincide, the diagonals merge with 
these.

Figure 66. Given a primary cone seat and two secondaries. Then the common 
diagonals between the primary and the secondary will meet on̊diagonal between 
them.

This is analogous to what can be found at  ̊ w h e r e  the primary conic section 
is line pairs.
183. N  ̊hen two of the primary ones coincide, the image has a slightly different appearance.

Figure 67. Given a primary cone seat and two secondaries. Then the diagonals 
between the two secondaries will meet on̊ a diagonal between a primary and a 
secondary.

184. W ˚h e n we make the same movements with the dual Salmon, the dual images 
appear. The images can arise t̊hrough dualization, or dual morphological 
processes. We will not ˚go through this in detail, but outline the sentences that 
arise .̊ The elements that appear here will shed light on the properties of circles in 
an absolute conic section.
185. We first make the movement where a secondary conic section coincides with the 
primary one. Then we h̊ave to start from a modification of the image in ̊ the figure. 
We still have three cone sections inside a primary one, but we find the outer 
common points between the middle one and the other two, and the inner ones between 
these two. These then lie on̊line. We then ̊ allow the middle one to grow so that it 
eventually coincides with the primary. Then the common tangents between this and the 
two will be the tangents where the two are tangent to the primary:

Figure 68. Given a conic section and two others that are tangent to it internally, so that 
they do not intersect. We find the common tangents between the primary conic section 
and the other two, and these meet at two points. The line through these will g ̊a through 
the inner common point between the cone sections.

186. Here we have a fundamental relationship in a space formed by an absolute 
conic section. Namely, we say that the common points between the primary and the 
other conic sections are their centers with respect t̊o the absolute conic section.

Definition 7. The common point between a conic section and an absolute conic 
section, we call the center of the conic section with regard to ̊ the absolute.

The theorem above then says that the line between the centers of two circles 
"will go t̊hrough their inner common point. This is, of course, an elementary 
theorem n  ẘhen it comes to circles.
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187. Now ̊ we consider the dual element between the absolute and the other conic 
sections, namely the diggonals in the tangent points. These are in ̊ a way the dual 
centers of the conic sections, and we call them centrics.

Definition 8. The diagonal between a conic section and an absolute conic section, we 
call the zenith of the conic section with respect to ̊the absolute.

One of the sentences above then expresses: Given two conic sections in an absolute. 
The two centers then meet on ̊the diagonal between the cone sections.

8.3 Imaginary tangent
188. In contrast to the presentation we have seen so far å where we went into ̊a the 
concepts of imaginary points and lines, we will ̊a see ̊a what we call imaginary 
tangent between two conic sections. We also  ̊a start here with Salmon's theorem, 
and let two of the conic sections merge into one. Then the diagonals between 
them will merge into one, and g ̊ a through the tangent points. This was a 
movement we have done in the past when dealing with pole and polar, now ̊a we 
do the same movement where we have not had degeneration of any conic sections. We 
obtain the theorem:

Figure 69. Given a conic section and two others that are tangent to it externally. 
Then the diagonals between the two conic sections will m  ̊ a t e s  p ̊ a the common 
diagonal of the two conic sections.

P ̊ue to the symmetry, we realize that both joint diagonals will meet at the same 
point as the diagonals.
189. This theorem can be transformed into a new one by ̊letting one of the outer conic 
sections become a line pair.

Figure 70. Given two conic sections that double tangent each other, and two 
tangents to one of them intersect the other. Then we can find diagonals between the 
double line and the conic section, which will meet at ̊ the common pole of the conic 
sections.

By this theorem, we can construct a conic section n  ̊ a r  et is given, and more 
specifically if a circle is given. The process is the same as the envelope in Brianchon's 
theorem.
190. By ̊changing the position of the common pole, the location of the enveloped conic 
section will change. We let the common pole approach the periphery of the enveloping 
conic section, and as it tangencies, we will have four-point tangency between this and 
the conic section being formed. N  ̊a r s ̊if the pole remains outside the generating 
conic section, the enveloped conic section will not
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Figure 8.3: Imaginary tangent

Figure 8.4: Ellipse room

touch this real, but n̊ a arises ̊ ar  imaginary tangent between them. The trap coil 
i s  thus  ̊a located on̊ the outside, while the common pole is located inside both cone 
sections.

191. If we place two other conic sections inside this one, and find three diagonals 
between them, they will meet at the same point. The picture we have here is 
very similar to the situation with three circles, and it turns out that all conic 
sections that lie inside another p̊ a this m  ̊ a t e n  form a set that is equivalent to the 
set of circles. Many of the properties between the circles can be found here; for 
example, we can apply Gergonne's construction and find ellipses in this set that 
are tangent to a given tree. However, not all elements are the same. For example, 
two diameters through the center of such a conic section will not give two parallel lines 
through the intersections. These will meet at̊ the common polar of the Absolute and 
the current conic section. We thus have
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Figure 8.5: General Monge's theorem

a non-Euclidean circle geometry, and we can transfer all circle theorems to such a 
situation. By Cayley's metric,  ̊a metric relationship can also be treated.

8.4 Formation of Euclid's geometry

192. We will n̊ a see p̊ a various what happens n  ̊ w h e n  the absolute varies. 
This was one of Felix Klein's ideas, ̊a see how the Caylik metric went together with the 
non-Euclidean metric in different contexts. Such transformations are treated later by 
Yaglom.

193. We will n̊ a see p̊ a the case where the Absolute conic section is a circle, and 
what happens n  ̊ w h e n  this becomes infinitely large or infinitely small. In the first 
case, we make it so that the Absolute lies around the other conic sections. We let s̊ a 
one of these conic sections remain in place so that its center lies together with the 
center of the absolute. This will then be concentric with this, and also c̊ircle. We see 
this in the construction. If we allow ̊the absolute to grow outwards, while the other 
conic sections remain at rest, these will all gradually come closer and closer to the 
center of the circle, and as the absolute becomes infinitely large, all the other circles 
will become concentric with it, and thus circles. This is how ̊and  ̊all circles ar ise  as 
the amount of kje- glensite tangent to a circle at infinity. From a purely geoemtric 
point of view, we can just as easily set this as a condition as the circle points.
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Figure 8.6: Two views̊ together

Figure 8.7: Focal point room

8.5 Formation of counter-Euclidean geometry

194. We g  ̊ a r  n̊ a the other way, and let the absolute be a circle that is imaginarily 
tangent to conic sections, but lying inside them. N̊ a we let the circle decrease, and 
eventually let it collapse to a point. This circle will then be the focal point of all the 
other conic sections. The set of all conic sections that have a common focal point 
thus forms a geometry that is the opposite of Euclid's geometry.

195. We will see that it is the focal point that has been formed by ̊a see how we 
arrive at the image in the previous chapter from which we defined the focal point. 
We start with a circle that lies inside two conic sections and is imaginatively 
tangent to them. In addition, we have a hyperbola that is doubly tangent to the 
circle in real terms. Since the three conic sections all touch the circle twice, they 
will have three diago-
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nals that meet at the same point. Again, we let the ̊ circle get smaller and smaller, and 
finally become a point. The conic sections that touch imaginatively will then 
have the point as their focal point, while the hyperbola will have become increasingly 
pointed and finally become two lines. The image that has been created ̊is the one 
we used as a starting point when we defined the focal point in purely geoemtric 
terms.
196. It can also  ̊a happen that two of the conic sections become line pairs. It is 
then not so ̊easy ̊ to determine the diagonal between them. If we allow the conic 
sections to become line pairs already while the focal point is a circle, we can see 
something that makes sense. We then place the two pairs of lines on ̊the circle so 
that they form a rhombus. The diagonals in the rhombus are the bisecting angles 
between the lines. The two pairs of lines intersect the third conic section at two 
pairs of points, and the diagonals through these will then meet at t̊he bisector. W h 
e n  ̊the circle becomes the focal point, we have the theorem:

Figure 71. Given a conic section, one of the focal points and two pairs of lines, with the 
same angle between them, through the focal point. The pairs of lines form diagonals 
with the conic section, and these meet at̊ the bisector between the lines.

197. N ̊ f the line pairs collapse into single lines, we have:

Figure 72. Given a conic section, one of the focal points and two lines through the 
focal point. The tangents where the lines meet the conic section then meet at ̊ the 
bisector between the lines.

This theorem can be used to c̊onstruct a conic section inscribed in a triangle.
198. Another variant of the double pair of lines i s ˚w h e r e one line from each 
pair coincides.

Figure 73. Given a conic section, one of the focal points and two lines normal to ̊  
each other through the focal point. From the points of intersection between the conic 
section and one of the lines, we draw new lines to a point p ̊a the normal. These will 
then intersect the conic section so that lines from here to the focal point so that the 
angle between them is halved by the normal.

199. A final variant that occurs in particular we have n ̊ a r puntet p ̊a normale g ̊ a r 
to infinity.

Figure 74. Given a conic section, a focal point and a line through it. Where the line 
intersects the conic section we erect normals, and where these intersect we draw 
lines to the focal point. The two triangles that n ̊a are formed are equilateral.

200. Another variation of this can be found at ̊ w h e r e both pairs of lines coincide.
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Figure 8.8: Equilateral triangles

Figure 75. Given a conic section, the focal point and a line through the focal point. 
Where the line intersects the conic section, we add tangents, and these meet at̊ a 
normal from the center.

201. These three also meet o̊n ̊ the directrix of the conic section. To ̊ see this, we˚ 
return to the variant where we have a conic section, a circle and two lines 
through the focal point. Then the diagonals between the circle and  conic section meet, 
and their diagonals meet the pair of lines in the same point. N  ̊ a r  we let the 
circle get smaller and smaller so that it no longer intersects the conic section. 
Their common diagonal g  ̊ i s  outside both, and when the circle g  ̊ i s  together with 
the focal point, the diagonal becomes the control line. At the same time, the 
diagonal between the pair of lines becomes a bisector for the angle between the 
lines. Thus we have:

Figure 76. Given a conic section, a focal point and its guide lines. Through the focal 
point we draw two lines, and a diagonal between the pair of lines and the conic section 
will meet a bisector of the angle of t̊he directrix.

From this theorem we can also f̊ind the ratio theorem. This is based on the angle bisector 
theorem.

202. N ̊ hen the two lines merge into one, we have:

Figure 77. Given a conic section, a focal point and its guide lines. We draw a line 
through the focal point, and where this meets the conic section we add a tangent. 
This will meet the normal of the line through the focal point on t̊he directrix.

We see that this is half of the theorem above, but here we also have å directrix.
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203. We can find many theorems in this geometry that correspond to the circle 
theorems, including the three-circle theorem. From one point of view, the 
planetary system is such a counter-space system where the planetary orbits are 
imaginarily tangent to the sun. It is interesting that the Copernican turn  ̊a was ̊ a g  ̊ a r  
away from systems with circles, to systems with conic sections through the same 
focal point.

8.6 Galilean geometry
204. With the image of all conic sections with a common focal point, we can make 
one more movement. We can let the focal point g̊ a to infinity. Then all the conic 
sections become parabolas in the same direction, and this collection also  ̊a forms a 
three-dimensional geoemtry; Galilean geometry, where also  ̊ a relationships from 
circular geoemtry can be found.1

Figure 78. Given three parabolas with axes in the same direction. Then three 
common diagonals between the parabolas will meet at the same point.

205. It can be shown how all the properties of circular geometry are found in 
transformed form in Galilean geometry. However, it is beyond  ̊ a r  frame

å g̊ a further into p̊ a these geometries; here we should only show how images from the 
morphological geometry are found. The main point from v  ̊ a r t ' s point of view is that, 
morphologically speaking, the conic sections that set the framework for the others 
belong to the overall picture. From this point of view, the elements in a room belong to 
the whole they  ̊ a r e  part of. The relationship between the various elements will become 
even clearer in the next chapter.

Metrics and absolute conic section
206. The metric in can also  ̊be followed from the absolute conic section to the various 
specializations. Some considerations about radii and their relationship to each other will 
be made here.

207. The diameter of a conic section with respect to̊ an absolute conic section is found
å is the double head that it forms with a line through the center.

Definition 9. Given an absolute conic section A and a conic section C in it. A line 
through the center of C intersects A in P and Q and C in S and T. We then define the 
diameter of C with respect to p̊ a A to ̊a be a double ratio formed between the points.

d=
 PQ - TS

QT - SP
(8.1)

1In his book, Yaglom has made comparisons between circular geometry and Galilean 
geometry, and also  ̊a what he calls hyperbolic geometry.
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W h e n  ̊one operates within the general space one must̊ make certain logarithmic 
considerations. We look at̊ an infinity relation, and then this disappears.

208. W  ̊ h e n  we allow the absolute conic section to grow so that it eventually 
becomes the infinite circle, then the conic section will become a circle. The double 
ratio will also  ̊a grow and go̊ a towards infinity. However, if we look at two circles 
next to each other, we see that the sizes that g  ̊ a r  to infinity are the same for both 
circles, so that the ratio between the two diameters is the same as the ratio between 
the ordinary diameters.

209. It is slightly  ̊ different if we choose the definition above as diameter, or if we 
choose the inverse double ratio. In that case, the ratio of the diameters becomes the ratio of 
the inverse radii. And it is the case that both these quantities occur in geometric 
contexts. We look at̊ a two, which we also  ̊a shall consider w h e n  ̊the circle becomes a 
conic section.
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Chapter 9 conic section type
By the synthetic comparative process we have now b̊rought it so f̊ar that we can 
link theorems together in two comprehensive theorems. In Salmon's theorem 
and the dual to this lies as possibility all the special theorems. However, these 
theorems are not already å understood å as basic images. Even though there is a 
great deal of symmetry in the images, they are still  å special in their 
appearance; among other things in that they appear dually. We shall now å look 
at̊synthesis that also  å allows these theorems to appear as one; this will then be 
the original image or type of the entire field  o̊f phenomena that has been 
clarified. The type will primarily ˚be with a symmetrical structure in å similar 
way  ˚as Desargues' theorem. It presupposes a transition of a certain kind; and 
this is precisely a transition that has to do with Desargues' theorem a.˚

9.1 Formation of Desargues theorem

210. We have not yet ˚ seen Desargues emerge morphologically from other 
sentences, but here we will look at ̊ this transition. The fact that a pure structure of points 
and lines can emerge is evident in the transition to Pappo's theorem. This 
happened when conic sections became point pairs and line pairs. In order for 
Desargues' theorem to emerge, a process of a somewhat different nature is 
required that we have not yet s̊tudied. The transition exists in ̊ two dual ways.

211. We begin with Salmon's theorem, and connect n ̊ a hyperbolas to the 
primary conic section. We then start with an elongated ellipse, and let three 
hyperbolas double tangent to it externally so that one part is tangent to ̊ the upper 
side, and the other to ̊ the lower side. We also let the hyperbolae be narrow so that 
they intersect on ̊ the upper side. We draw diagonals between two and two of the 
hyperbolas, and these three will meet at the same point. This makes sense from 
Salmon's theorem, only we have n ̊ a with hyperbolas instead of ellipses a˚

131
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Figure 9.1: Transition to Desargues

Do. We let n̊ a the elongated conic section become increasingly narrow. This 
causes the hyperbolas to become increasingly pointed, and as the ellipse 
collapses into a line, the three hyperbolas will become three pairs of lines that 
intersect on̊ this line. W  ̊ h e n  we study the configuration that is created ̊ more 
closely, we will see that it is Desargues' theorem.

212. Thus, å Desargues theorem is also determined as a consequence of Salmon's 
theorem. We do not ̊ a consider that Desargues theorem is self-dual, there is no 
difference in the structure with respect to ̊ a points and lines. It is therefore not ˚ 
surprising that also å the dual theorem gives Desargues' configuration. To årrive at 
this we do a dual operation.

213. We start here with an ellipse and three other ellipses that are tangent to it 
externally. On ̊ each pair of conic intersections, we add external joint tangents, and 
they will meet each other in three points located on ̊ the same line. This is a variant 
of the dual Salmon theorem. We make the n ̊ of the inner ellipse smaller and 
smaller, and let the outer ones follow this; however, so that the length p ̊ of the 
outer ones is approximately the same. The outer conic sections then become 
increasingly narrower, and as the inner ellipse merges  ̊into a point, the outer  
ellipses will become three line segments through the point. The formation that is 
created i̊s again Desargues' configuration.

9.2 The general type
214. We thus see that Desargues' theorem is a specialization of both dual images. By 
l̊ooking at the formation process, we will be able to find a synthesis of the two. In 

one case, we had four conic sections, and three lines through a point.
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Figure 9.2: Image p ̊a type

Of the four conic sections, three pairs of lines were formed with common points on ̊  
a line. In the second case, we had four conic sections and three pairs of lines with 
common points on ̊a line, forming three lines through a point. We see  ̊a three points 
through a line can be formed by four conic sections, and like ̊ a three pairs of lines 
with common points on̊line. It is then obvious ̊to ask whether the three lines through 
the same point in the Salmon configuration are four degenerate conic sections. 
Similarly, we can ask whether the three pairs of lines, and the line through the 
common points also ̊ a are four degenerate conic sections.
215. It turns out that such a synthesis is possible. The three lines through a point in 
the Salmon configuration can be resolved into three conic sections that are tangent 
to a fourth. The three conic sections are each tangent to the two they were 
previously diagonal to. In the dual case, the three pairs of lines resolve to three 
conic sections that are also  ̊tangent to two and two others, and the line resolves to a 
conic section that is tangent to these. We thus have a total of  e̊ i g h t  conic sections in 
the configuration, and can write this as a theorem.

Figure 79. Given a conic section A, and three others B, C and D that are doubly 
tangent to it. Furthermore, three new conic sections E, F and G are tangent to two and 
two of B, C and D. Then there is a conic section H that is doubly tangent to E, F and G.

To ̊ have a direction in the description, we can also  ̊ a call the first conic 
section the primary, the next three the secondary, and then ̊ a the next three 
tertiary, and finally the quaternary.

216. We have thus arrived at the fundamental theorem in this presentation, or what 
we can call the conic section type. It consists ̊only of conic sections that double-
tangent each other in a particular structure. All the theorems we have seen so far a ̊s ̊find 
their root in this one image. The image is completely symmetrical,
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Figure 9.3: Structure of the type

we are ̊dealing with only conic sections, and each of the conic sections doubles 
three others. Thus we have arrived at a picture of a similar nature to Goethe's 
Primordial Plant, where he considers that the plant best  ̊consists of transformed 
leaves only. In̊ the same way,  ̊the various theorems within conic section geometry, 
seen in this context, are ̊ to be regarded as images where all elements are 
transformed conic sections.

217. The theorem has a specific structure that also  ̊a shows that we are dealing
with something typical ̊a. The structure of ̊ the conic section theorem is the cube. The
conic sections are represented by the vertices, the connections between the conic
sections are represented by the sides of the octahedron. The entire conic section
structure is represented by the cube. We can also  ̊say that the cube is the graph of
the type and that the conic sections are the basic elements.

9.3 Definition or evidence
218. The course of our investigations has been å g  ̊based on specific theorems,  and 
through certain synthetic processes we have found increasingly general correlations. 
As the general ones have emerged, we have investigated the consequences of these 
sentences, and in ̊ this way we have substantiated has been found. W  ̊h e n we come 
to the type that represents an end point in the investigations, we stop and ask ourselves 
how this should be understood .̊

219. Originally, conic sections were defined as sections of a cone, and by looking 
at them, other phenomena could be found associated with them. However, we 
have seen that many sentences can be used as definitions. Thus, ˚ we see that Pascal 
and Brianchon both give an implicit definition, and we have achieved ådd that also 
å relation theorem occurs åmong others. We now ask å : can the type be used to 

define t̊he ellipse?
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220. This question ̊is fully legitimate for several reasons. One reason is this. Which
definition of conic section should we put first. If we have given one definition,
others can be derived from it, and if we choose others, things can be reversed. N  ̊
a r  we have seen that all these definitions from this point of view are special cases
of the type, then it can be considered ̊to put this one first.

221. We can also  ̊consider how Desargues' theorem was first proved in̊ various ways,
but was eventually set as an axiom. This turned out ̊ to be the theorem that
underlies others, and not vice versa. In̊ the same way,  ̊ the type turns out to be a
symmetrical relation that is  ̊ the  c a u s e  of many others.

222. It is possible ̊to prove the theorem and its variants algebraically, but with
this we go  ̊beyond the purely visual geometric realm  ̊and use techniques. As one
can be in the purely visual ideal geometric n  ̊ a r  in the case of a line point, so
one could justify the conic section theorem as s  ̊ adan .

223. There are cer ta in ly  ̊several reasons for ̊putting type first, but then ̊we have to 
ask: is this possible? What provisions do ̊ we need to make to ̊ have a valid
justification for this? We ̊a therefore need to look at̊ a the basic movements one more
time, and see what kind it depends on  ̊ a .

9.4 conic section based on type

224. The first thing we say in terms of definition is that we have a curve that is 
determined by p ̊ a one side becoming a pair of points, and p ̊ a the other side 
becoming a pair of lines. P ̊a the other side, these curves form a cube structure.

Conic sections are curves that on̊ one side degenerate into two points, and 
on̊other side into two lines.

• The curves touch each other twice and have five degrees of freedom.

• The curves a re  entered  ̊in a hexahedron structure

225. It turns out that we're only getting ̊some way with this, but we're not getting to
all the configurations. We can only realize this by ̊ counting. For example, if four
conic sections become pairs of points, and four become pairs of lines, then we only
have  ̊ e igh t  points and  ̊ e igh t  lines. In Pappos we have nine of each, and in
Desargues ten of each. There is something extra here, and we will eventually look at̊ 
this. First, however, we will see ̊how far we h a v e  come  ̊with the above definitions.

-
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Figure 9.4: Variants of the main theorem

226. A particular difficulty arises that is not ̊ easily overcome. N  ̊ a r  we follow the 
process: We start with a conic section, find three secondaries, then three 
tertiaries, then there is exactly one quaternary tangent to these three. The 
problem is n̊ a that we cannot abstractly say where this lies. We have to̊ a p̊ a sort of 
point, we cannot say in words how it will lie.

227. We n  ̊ a r  with the definitions above just to what is called Poncelet's theorem 
1. We start with a primary conic section, add three pairs of lines that touch this, 
between two and two lines we find pairs of points, and through the six points 
formed g  ̊ a r  a conic section. This can be expressed as:

Figure 80. Given a conic section that is inscribed in two triangles. Then  is a conic 
section that circumscribes the triangles.

This can also  ̊be said as; given a triangle that circumscribes a conic section, and 
a conic section that circumscribes the triangle. Then there is a linear set of triangles 
between the two.

228. Here we see that the primary conic section is still a conic section, the three 
secondary ones are line pairs, the tertiary ones are point pairs, and the last one is an 
ordinary conic section again.

229. By just ̊ following the definitions we have made we will not get any further, 
there will always be two conic sections in the configuration, and for example 
Pascal's and Desargues theorems will not appear. We are going to see ̊ what 
transformation we need to̊ put in addition to pure point and line transformation of the 
conic sections. We  ̊will then start from a particular theorem.

1This is called Poncelet's theorem and applies to all polygons; if a polygon lies between two 
conic sections, then there is an infinite number of conic sections between them.
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Figure 9.5: Poncelets rate

Figure 9.6: Transition between Poncelet and Pascal

230. In the formation of Poncelet's theorem, the three tertiary conic sections 
became line pairs. If we̊ move one of these line pairs, so that it becomes a hyperbola, 
then  ̊an intermediate variant ar ises  between Poncelet's theorem.

Figure 81. Given a conic section and two lines through each of two points p̊ a per- 
iment. These form four new points p̊ a the conic section, and we let a conic section g̊ 
a through these four points. Then the conic section and the lines will inscribe a new 
conic section (Fig. 9.6).

231. This theorem can n̊ a be specialized in two directions. We see from the 
figure (Fig. 9.6) that n  ̊ a r  the hyperbola straightens out and becomes a line pair, then the 
inscribed conic section will , and we f  ̊ a r  Poncelet's theorem. However, if the 
hyperbola becomes more pointed, so that it eventually becomes a line pair that 
crosses the configuration, then the inscribed ellipse becomes increasingly narrow, 
and g  ̊ a r  s̊ a over to ̊a become a
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line segment.

232. It turns out ̊ to be difficult ̊ to determine in the abstract w h e n  ̊ the first case
occurs and w h e n  ̊ the second takes place. For now, we ̊have to say: When transforming a
conic section into two lines, the conic sections concerned may still be conic sections, or
one of them may degenerate into a line segment where the two lines meet. This must̊ be
added to the definitions in the introduction.

(Rest of chapter incomplete)

9.5 Coinciding conic section
233. One consideration that can be made before the conic sections degenerate 
into point pairs or line pairs is å see p ̊ a conic sections that coincide. We have 
seen p ̊ a that elements coincide in several contexts; n ̊ a we will try to å see this 
from the type.

234. The first type of coincidence occurs w h e n ˚two secondary conic sections 
touch the primary at ̊ the same place. Here we understand i̊ntuitively what the 
same place is. O t h e r than å, we will not describe this using the elements point or 
lines, because these have not arisen ẙet å . We will follow the process for å to 
see what happens with other conic sections in connection with this.

235. We then follow what we might call the basic four-conic section relationship, a 
primary conic section, two secondaries, and a tertiary. W h e n ˚the points of 
contact between the primary and the two secondaries approach each other, we 
also s̊ee that two points of contact between the secondaries and the tertiary this 
point. In the case of coincidence, t̊he four sites come together.

Axiom 3. I f  ̊two conic sections touch a third at̊ the same place, then all conic sections 
touching these two will touch them at̊ this place.

236. We determine this purely from the conic sections. If n  ̊ a r  one of four
coincides to form a line segment, the point will also  ̊a lie p̊ a this place, so that
conic sections that touch each other p̊ a the same place, have a common point p̊ a
this place. The dual happens when  ̊we f  ̊ h a v e  lines, then f  ̊the conic sections h a v e
a common tangent p̊ at this point. We therefore have: Two conic sections
touching each other have a common point and a common tangent p̊ at the point
of contact.

237. The basic coinciding movements we can also  ̊a see on  ̊ a .  We can have two such
movements. One is w h e n  ̊two conic sections that are tangent to each coincide. Here it
will happen that and the basic theorem that describes this we have at: Variant1
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Figure 82. Given a conic section, and two pairs of others that are tangent to it at 
two pairs of points. A conic section that touches these two will also  ̊be able to touch 
one that touches the other two.

238. We have a special variant of this at

Figure 83. Given a conic section and two that are tangent to it, and a diagonal between 
these. Also give ̊ two others that are tangent to the first in the same points as 
above. One of these intersects the diagonal at two points. If the second g o e s  ̊
through one of these points, it also goes  ̊̊ through the other.

239. A variant that can be used to ̊find tangential conic sections is given by

Figure 84. Given a conic section, and two others that are tangent to it. Then there 
will  ̊be a conic section through the four tangent points and two of the intersection 
points.

240. The second type of coincidence is  ̊ where two conic sections that are both 
tangent to a third coincide. In the last case, we have an intermediate variant where 
the cone intersections touch at the same point. Here, their common cone sections 
will also  ̊touch at the same points, so that we have a total of four cone sections at ̊the 
same location.

Figure 85. Given three conic sections tangent to a fourth at the same two points, 
and another tangent to this but cutting across the other three. Two conic sections 
formed between two and two of these will, together with the fourth, tangent another.

9.6 Formation of lines and points
241. We set n å up a modification of the theorem to å see p å the movement we are 
missing. We then let one pair of lines be conic sections, and otherwise we have the 
same.

Figure 86. Given a conic section, two pairs of lines and a conic section touching it, 
between these three pairs of points. Then there is a conic section through the 
points.

242. We see that if the secondary conic section becomes a pair of lines,  ˚ar 
Poncelet's theorem ar ises . If we instead let the secondary conic section be a 
hyperbola that we make increasingly pointed, the conic section it touches will 
become increasingly narrow. As one conic section becomes two lines, the other will 
become a line through the intersections of the two pairs of lines, and also  å through 
the intersection of the last pair of lines. The image that n å is created ått is Pascal's 
theorem.
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243. This transition s ̊ a we also å in connection with Desargues theorem, and it 
is not embedded in the definitions we have made s ̊ a so far. How should we describe 
this transition? Before we f̊inally get into ̊ this, we will look at ̊ some other 
transitions that do not fall under our d̊efinitions so ̊ far.
244. We then start with
245. With this we do two things. We are in the developmental method, and see how the 
type applies in different situations. The second is that we also ˚follow a scientific 
method. W  ̊hen one generalizes or introduces a new hypothesis, it  should lead 
to more things being explained. Even if this demand on science is dogmatically 
put forward without ideal, but only practical justification, ̊ it is a path t̊o follow. 
Only what is fruitful is true. We will then in the next chapters go ̊a into ̊ a 
consequences of the main theorem, and also å examine the movements that can 
be made ideally. In the first chapter we make general movements, in the next 
chapters we seek  ̊to investigate different areas  ̊of the conic section theory as it exists.

9.7 View and spr a k˚
246. O n c e  ̊we have been able to put t̊he various transitions into words, we 
can stay completely within the l̊anguage to ̊ explain the various images. The 
language i̊s freed from the view, we no longer need to point to ̊ the image to 
ůnderstand ẘhat is being said. It all becomes tautologies, but at the same time 

the language m̊irrors the perception so that it becomes conscious.
247. The type we have in mind is s̊ imi lar in that we say: Given a primary conic 
section, three secondaries tangent to this, three tertiaries tangent to two and two of 
these. Then there is a quaternary that is tangent to these. This statement applies s ̊ a 
all the time, but what we mean by conic section in different cases varies. Sometimes 
the primary is an ellipse, sometimes it is a pair of points, because a pair of points is a 
conic section, and so with the other elements.
248. We can see how Poncelet's theorem appears: We have the premises. A conic 
section that doubles another conic section can behave as a pair of points lying on ̊ the 
conic section.
249. By å seeing p ̊ a how we are in the actual o̊r logical, we can see the extent to 
which we are still stuck in the view. We thus free the actual f̊rom the view.
(Hilbert's system of geometry has been tried in logical machinery p ̊ a p ̊ a computer, 
and it turns out that he by no means only stuck to the logical, but constantly used 
geometrical views).
250. Morphological geometry thus liberates thinking on ̊ two levels .̊ First, one is led 
up into the pure view where one frees oneself from the sensuous as
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it is given to us with parallel lines, right angles and circles. Then we free the logic 
from the visible, so that the ̊work  is no longer bound to the visible, but mirrors it.
251. This type of liberation is also  ̊ sought through algebra. Then you  ̊have an 
abstract level  ̊a where things weave together logically. However, ̊a algebra must also  ̊
a be said ̊ a to be subordinate to the logical in s̊ a respect. (Spr̊ aket, Logic and 
perception also  ̊a belong together)

9.8 Basic movements
252. Now that we ̊ have identified the symmetric type, it is ̊ appropriate ̊ to take a 
closer look at̊ the movements we make to ̊ develop the various theorems. These 
movements have been more or less pronounced, and we shall noẘ a clarify some 
key points. Pictorially, the transformation depends on̊ the changes we can make to 
the conic sections and their positions in relation to each other. In addition, there are 
certain underlying transformation motives, the motives for ̊changing these as we do.
253. We again draw attention to̊ the fact that conic sections degenerate in one direction 
into two points, and in the other direction into two lines. The conic section can thus  ̊
appear in two polar forms, and from a morphological point of view this is the 
reason for the principle of duality, among other things. Every theorem that we 
form morphologically, we can form dually by ̊ following a dual morphological path. 
What appears as a principle can be followed in real terms as a development process. Yet 
we cannot escape the mystery that the conic section has these great possibilities in it, 
that the fundamental polarity of the world shows itself so̊ a pregnant in 
geometry.
254. Polar movements do not only occur within the image. In all acts of 
morphological formation we make inner polar movements of various kinds.
255. The first occurs  ̊ w h e n  we think of the figure itself. We then set the first 
conic section, and to these we add others. To these we add yet others, until we end 
up with the final result. In this way, we set a direction that is not inherent in the 
archetype itself, but in order for something to emerge, we ̊have to begin, develop this, 
and end. We have with a formation in time s̊ a and say in order for something 
coherent to appear in space.
256. The next movement we make is a polarization in the morphological process. 
To ̊change the whole picture, we fix some elements, while others  ̊ h a v e  to move. 
We can't change all of ̊ them at once, because then everything becomes fluid and un̊ 
changeable. This process is ̊similar to those we see in the organic world w h e n  ̊
an organism forms a bone structure on̊ one side and blood circulation on̊ the other.
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other, or where in the plant we have the differentiation between stem and juices. 
We have recently seen such movements in the emergence of Desargues' theorem p̊ a 
different m ̊a ter .

257. Another differentiation is that between the moving elements, there is one 
element that we set as the driving force, the one that leads the way, and the other 
follows it. This differentiation can be more or less obvious, but in the case of 
constructions it is clearly . Here we have an element that moves in one direction, or 
along a circle. Other elements follow p  ̊ a ,  and a resulting element constructs.
258. Finally, conic sections that are of a higher order than lines and points are 
specialized to these. They die in̊ a way into a lower world. Through movement, a 
row of the lower elements is formed, and the higher conic sections appear. We are 
then dealing with an incarnation of something ̊, and this is made possible by the fact 
that something of the same kind has ̊, so to speak, sacrificed itself.
259. In our thinking, we thus find several aspects of what precedes  ̊ ar  as driving 
elements in the organic world. W  ̊ h e r e  the activity of the self is in the picture, we 
find it as life out there in the world.

9.9 Basic metamorphoses of the type
260. In the most general theorems we considered, we were talking about up to four 
conic sections in the images. Noẘ we have ̊ to do with as many as  ̊ e igh t  conic 
sections weaving together. This does not make it easy ̊ to get an overview of the 
various movements, so̊certain systematic approach to the investigations is.̊ The first 
thing we need to̊ a see on̊ a is how different images are expressed in concrete terms.
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Circular seals

N  ̊ a r  the original image, or type is found, then we have n  ̊ a d d  a m  ̊ a l  in a 
certain condition. We have gained a view of the various images and theorems, 
which are all held together by one idea. But still  ̊the type is not exhausted of 
possibilities, and there are n̊ a two paths for further consideration. One is still 
the synthetic method, the comparative method, where we see if we can find syntheses 
and higher laws. This endeavor is becoming clearer than in the past, when reason was 
the guiding̊ force. Noẘ we have a type that a current image possibly  ̊fits into. We can 
then ̊ a seek ̊ a to resolve the various elements in the image into conic sections. (The 
possibility is always present that it does not  ̊ a r ,  that other elements must̊ a be seen 
at  ̊ a . )
The other way is the movements based on the type. W h e n  ̊ this is given, you can 
see what happens w h e n  ̊ the different cone sections assume different shapes and 
positions. The imagination is used here, and you can see what  ̊ ar ises .  From this 
process, completely new theorems that we have not seen before can come to light.
Goethe: If I were younger I would make a journey to India, not to ̊ discover 
something new, but to ̊see this p̊ a my m  ̊ a te .
One aspect is also  ̊that w h e n  ̊we find new forms from the imagination, these may turn 
out ̊to explain theorems that had not previously been seen in a morphological context. 
The author tried in vain ̊ to find a satisfactory morphological solution to̊ two central 
conic section theorems, without success. One of these theorems was the 
definition of the conic sections as the geometric locus of constant sum. By free 
imagination, however, forms arose from which the solutions emerged in̊ a surprising 
way. We shall presently see the path leading to this theorem, which is part of an 
extensive class of theorems.
We then have the following in mind; what possibilities still exist as unfolding 
possibilities for the type? The other side of the question is, what conic section 
theorems of an elementary nature have we not yet  ̊touched? We then recognize that 
we n̊ot yet seen how constant sums come into being. Nor have we seen how we form

143
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Figure 10.1: Three circles and four ellipses

conic section from circle. Both of these issues arise when a conic section becomes 
the circle points, so that several circles appear in the image.

10.1 The three circle theorem
261. W̊e have already seen p̊ a how three circles are formed by the primary 
conic section being the circle, or said p̊ a another way,  the infinitely large circle. 
Noẘ we will extend this, and see p̊ what happens ̊when  ̊the primary conic sections 
are the circle points, but where we do not do anything special otherwise. Then the 
trisecondary conic sections will be circles, while the other four conic sections will still 
be general conic sections (fig. 10.1).

Figure 87. Given three circles, and three conic sections that double tangent two 
and two of these. Then a fourth conic section will double the three conic sections.

Although we have previously used the term the three-circle theorem, we will  ̊a n̊ a 
also use this term, and we will say the general three-circle theorem if there is any 
doubt.

262. We now have̊ a class of theorems where three circles are always present. This 
means that it is possible to ̊find metric relations since these are linked to circles. 
We also  ̊ have a slightly larger overview here than w h e n  ̊ the primary conic 
section is two general points, we are familiar with the circle and hold it more 
easily in view.

263. N̊ a arises  ̊ from the general three-circle theorem the special three-circle 
theorem in that the three tertiary conic sections become diagonals and that the 
quaternary
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Figure 10.2: Inner joint keys

becomes their common point. As we have seen, Munge's theorem arises ̊ when ̊ the three 
conic sections become line pairs with three common points on ̊the same line.
264.

However, ̊ when the tertiary conic sections become pairs of lines, we also have ̊  
another possibility; the three pairs of common diagonals can all lie between the 
circles. The intersection points between these will not be on ̊the same line, but they 
will touch the same conic section.

Figure 88. Given three circles lying on ̊the outside of each other, and the six joint 
keys between the circles. The joint keys will then lie on ̊the same edge.

The polarity between three lines through a point, and six lines on ̊the same 
conic section is also åpparent here.

265. A special variant of the above theorem appears when  t̊he common conic section of
the three pairs of lines g  ̊changes to a pair of points. Then the tangents of the circles 
will meet three and three in two points. This can be written p ̊a another way  ̊ a te :

Figure 89. There are three lines through each of two points g  ̊ . If two circles 
are inscribed by two and two pairs of lines, then a circle will also  ̊be inscribed 
in the last two pairs.

This variant does not exist n ̊ a r the tertiary cone intersections become point 
pairs; this is because the circles have their other common points as circle points.
266. In the configuration, we have three lines crossing three others; s ̊a we have a
kind of Pappos theorem for circles. We can further specialize this by ̊a letting lines
fall
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together. In one case, the lines from each point coincide and we f  ̊ a r :

Figure 90. Given two circles that are tangent to each other at the same point p̊ a a 
line, and two more points p̊ a lines. From the lines, we draw tangents to both circles, 
and the four tangents will then be tangent to the same circle.

267. In the second case, two lines from the same point coincide; that is, they do
not coincide so that the circle collapses, but they a r e  ̊ separated so that the
circle becomes tangent at one point.

Figure 91. Given a triangle with a line from the vertex that divides the triangle into 
two parts. We inscribe in the three triangles a circle. Then a common tangent 
between the two smaller g̊ a through the point of tangency of the larger p̊ a will be 
the common line.

From this theorem we can realize several metric relationships.

10.2 Two focal points and constant sum
268. In this way, we can continue ̊ to move the elements in ̊ different ̊ ways. 
However, we keep in mind that we are looking for images where the focal points are ˚ 
included. We should arrive at an image where we can show the central theorem:

Metric law 15. Given a conic section and the two focal points. From all points on ̊the 
periphery, the sum of the distances to the focal points is the same.

We are therefore looking for a geo-emphatic image where two focal points occur.

269. Immediately we find a theorem where three focal points are present. We 
imagine a three-circle formation with three circles and four conic sections. S ̊a we let 
the three circles become smaller so that they eventually become imaginary tangents to 
the conic sections, and finally they become focal points. We then have the 
theorem:

Figure 92. Given three conic sections where two and two have the same focal point. 
The conic sections will then be tangent to the same conic section.

270. However, we will only have two focal points, and we can create an image in 
which two of the circles become focal points, while the third remains a circle. We 
then first create an image with three circles and three conic sections located so that the 
last conic section is not enclosing, but is an ellipse between the other three conic 
sections. The ellipse will b̊ecome narrower, and w h e n  i̊t becomes a pair of points, we 
have the image:
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Figure 10.3: Constant sum regularity

Figure 93. Given two conic sections that have a circle in common with a third conic 
section, and that meet at two points on ̊the periphery of this. two conic sections will 
also  ̊have a common circle.

271. We continue the process and let the two conic sections above become two 
pairs of lines. We then have:

Figure 94. Given a conic section and two circles tangent to it. We add double 
tangents p ̊ to both circles so that one tangent from each meets at a point p ̊ on the 
periphery of the conic section. Then the four lines will inscribe a circle.

Based on this theorem, we could arrive at what Jakob Steier says is a new 
definition of conic section. First, however, we'll see how it all turns out in a more 
special case.

272. What happens n ̊ a is that the circles are imaginary tangents to the conic 
section. We let them s ̊a decrease so that they eventually become the focal points 
of the conic section. Then we have:

Figure 95. Given a conic section, and a pair of lines through each focal point so 
that two and two meet at ̊the periphery. Then the four lines will inscribe a circle.

(Fig.10.4)
273. We have noẘ a arrived at a picture that in̊ a quite elementary way gives us the
theorem for constant sum. By ̊ a considering that the lengths of the tangents
from a point to a circle are equal, we see from the figure (10.4) that the sum of
the distances from the focal points to the periphery is equal to the sum of the tangent
lengths of the circles.

274. We can make the same considerations before the circles become focal points
(Fig. 94), and this is when  ̊Jacob Steiner's general statement ar ises .
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Figure 10.4: Constant sum regularity

Metric law 16. All points lying such that the sum of the tangent sides of two given 
circles is constant lie on̊ a conic section.

By ̊a varying, we also  ̊a arrive at similar sentences for parabola and hyperbola.

10.3 Hotspots as centers
275. We have previously defined the center of a circle as the pole of the line at 
an angle with respect to̊ the circle. We then have, among other things, the property 
that when  ̊two circles are tangent to each other, then the line through the centers will g  ̊
a r  through the tangent point. In the counter-space image, the control lines ̊ are 
regarded as the centers of all conic sections with a common focal point, and 
w h e n  ̊two conic sections are tangent to each other, the tangent at the point of 
tangency will meet the center lines at a common point.
276. If̊ a it turns out, however, that n  ̊ a r  conic sections have a common focal point, 
then the other focal points will also  ̊a have the character of ̊a being the center of the 
conic section in question. Among other things, the following theorem applies, 
which corresponds to the one above:

Figure 96. Given two conic sections with a common focal point that are tangent to 
each other at a point. In this case, the tangent point will be ̊in line with the other focal 
points.

We will look at̊ the formulation of the three-circle theorem that leads to these 
conditions.
277. The above theorem, among many others, ̊ ar n  ̊ a r  we make an opposite 
movement to the one we made for ̊a f̊ a theorem for constant sum. There we did a 
process where the quaternary conic section became two points. Noẘ we let this 
become two lines instead, and w h e n  ̊ we reverse ̊the order of elements that appear 
we can describe:
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Figure 97. Given three ellipses lying between two lines, so that two and two of the 
ellipses double the same circle. Then  ̊a the third pair of ellipses will also double tap a 
circle.

From this theorem we can go ̊ in several directions, and we will show some 
images that ar ise ̊ before we turn to the specific issue of centers.

278. We can immediately let the one line g ̊ a to infinity. Then the three conic 
sections become parabolas, and we f ˚a r the following simple theorem:

Figure 98. Given three circles, and three parabolas that each double tangent two of 
these. Then the three parabolas will tangent the same line.

This bidlet shows a fundamental connection between three circles and three 
parabolas.

279. We g  ̊ a r  back to the previous image, and change n ̊a this by ̊a letting one 
of the conic sections between the two lines become a line pair through the common 
point of the lines. Then there are only two conic sections left, and a rich 
contiguity between two conic sections is then given by:

Figure 99. Given two conic sections between two lines that touch the same 
circle. We draw a line through the common point of the lines, and find s ̊ a 
circles each touching their own conic section, and which are tangent to the line. 
Then another common tangent to the circles will also  å g  å r  through the 
vertex.

This theorem is also ̊ the starting point for several correlations between two 
conic sections.280. We can also å here let one line g ̊ a go to infinity, and the two conic sections 
become parabolas, while the lines become parallel.

281. If we let n ̊ a the two circles between the parallel lines get smaller and smaller, 
so that they become the focal points of the parabola, then we have the mysterious 
theorem:

Figure 100. Given two parabolas that double tangent the same circle. Then a line 
through the two focal points will be parallel to a common tangent.

282. The general variant of the above theorem is:

Figure 101. Given two cone sections with a common focal point, the other two focal 
points, and two common tangents to the cone sections. Then the common point 
between the two will be ̊in line with the focal points.

By this we are close to the theorem we wanted to show. Also  ̊this theorem 
applies to circles; the common points of two circles are ̊in line with the centers.
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283. W  ˚h e n  the two conic sections are instead tangent to each other, the common 
point between the tangents will be the tangential point, and we f  ˚a r  thetheorem 
above. This f  ˚h a s  a special form for the parabolas:

Figure 102. Given two parabolas with parallel axes that are tangent to each 
other. A line through the focal points of the parabolas g  ̊ a r  then also  ̊a through the 
tangent point.

Parabolas with a common focal point have common axes.

10.4 Equal sized cone snippet
284. We can also  ̊a see that the focal points can appear ̊a as centers by å g ̊a in a slightly 
different direction. For circles, we have the obvious theorem that i f  ̊the midpoint 
normal between the centers of two circles g  ̊passes through one of the intersections 
between them, then it will also  ̊a g ̊a pass through the other intersection. This is not 
quite so ̊obvious in the case of conic sections, but we have:

Figure 103. Given two conic sections with a common focal point. If the center 
normal between the other focal points g  ̊ passes through an intersection of the cone 
sections, then it g  ålso p a s s e s  ̊ through another.

This theorem appears in a slightly different way. We look at ̊ to see what 
happens.

285. We f å r the theorem.

Figure 104. Given two conic sections with a common focal point, and circles that 
are tangent, each of these is internal. If a diagonal between the two conic sections 
p a s s e s  ̊ through one of the intersections between the circles, then it also p a s s e s  ̊  

t̊hrough the other.

Of course, we could also  ̊have let the common focal point be a circle that doubles both 
conic sections.

286. At tangent we have:

Figure 105. Given two conic sections with a common focal point, and circles 
tangent to each of these internally. If one circle is tangent to a diagonal between 
the two conic sections, then the other circle will be tangent to the diagonal at the 
same point.

287. We have a special shade of this at ˚w h e r e one conic section is two lines.
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Figure 10.5: Circles with common diagonal

Figure 106. Given a conic section, a focal point, and two lines through the focal 
point. We find the line between two of the intersection points, and the inscribed 
circle in the triangle will intersect the line at the same point as an inscribed circle.

With this theorem, we can construct a circle that is tangent to a conic section and 
a given line.

288. W̊ h e n ̊ one of the conic sections becomes two lines f ̊ we have a special variant 
of it, and this f ̊ i s a special expression for parabolas.

Figure 107. Given a parabola, two lines parallel to the axis, and a line through the 
intersections of the parabola and the parallels. A circle tangent to the two parallels 
intersects the line at two points, and a circle double-tangent to the parabola will 
either g  å r  through both intersections or none.

This theorem can be used to  ̊find circles that double the parabola.
289. We have a special variant for tangents.

Figure 108. Given a parabola, two lines parallel to the axis, and a line through the 
intersections of the parabola and the parallels. A circle is tangent to the two 
parallels and the line, and a circle that is double tangent to the parabola and tangent 
to the line will be tangent to the other circle at the tangent point.

10.5 Meeting between Euclidean and counter Euclidean
290. In the considerations we have just made, we have seen that we can make
movements from circles to focal points. The reverse movements are also  ̊often found,
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Figure 10.6: Parabola and focal point

n  ̊ f  we have a relationship that involves a focal point, then we expect that this 
can be resolved into a double-acting circle. Surprisingly, this å does not always 
turn out to be possible, and a theorem where this is not the case is a well-known 
theorem related to the parabola.

Figure 109. Given a parabola and a triangle that circumscribes it. A circle that 
circumscribes the triangle will then g ̊a through the focal point of the parabola (Fig. 
11.1).

This theorem cannot be generalized so that the focal point becomes a circle that is 
double tangent to the parabola, and we will see the reason for this in a moment.

291. The above theorem follows from Poncelet's theorem (9.5), and the transition here
is a classic example of̊transition from two real points to the circle points. Poncelet's
theorem states that w h e n  ̊ two triangles are inscribed in a conic section, they
also  ̊ rewrite a conic section. We let n̊ a two points p̊ a the same triangle be the
circle points. This causes the circumscribed conic section to become a circle.
The line through the circle points m̊ a is the line at infinity, and the inner conic section
that is tangent to this line m̊ a is then a parabola. The two tangents through the
circle points form the focal point of this parabola because they are tangents to it. The
second triangle is not affected by all this and it rewrites the parabola. The circle
rewrites it again, and g  ̊ a r  also  ̊a through the sixth point, which is the focal point
of the parabola.

292. Here we have  ̊two theorems that have the same structure, but which behave
completely differently  ̊when the circle points are taken into account. We realize n̊ 
a also  ̊ a the reason why the focal point in this case cannot be a circle; this is
because the two lines that form the focal point come from different conic sections. We
see̊ a how two opposite  ̊sides of the hexagon came from a conic section; we must å
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Figure 10.7: Relle points

therefore have a line from each triangle to ̊form a conic section; here, two lines in the 
same triangle form the focal point.

293. This consideration leads us to ̊ask for the most general configuration that lets 
a point from each of two conic sections form circle points, and a line from each of 
two conic sections form a focal point. It turns out ̊to be a variant where we from the 
main theorem have let two conic sections become two pairs of points, and two 
others become two pairs of lines, so that the configuration is self-dual.

Figure 110. Given a conic section that intersects another at four points, and a third 
that double tangents this. Through each of the four intersection points, we add a 
tangent to the double-tangent conic section. There is then a conic section that 
double tangents the other conic section and the four lines.

We see here that two of the conic sections have four common points, and that 
the other two have four common lines.

294. We let n ̊a two of the points originating from each conic section become the 
circle points. Both conic sections through these points then become circles, while 
the other two conic sections f  ˚a r e  t h e  common focal point of the two lines 
through the circle points. We can then set up the theorem:

Figure 111. Given two conic sections with a common focal point, and circles that 
double each of these. These are laid out so that a common tangent to the conic 
sections g  ̊ passes through an intersection point of the circles. The other common 
tangent g ̊will then pass through the other intersection of the circles.

295. We note that this configuration is completely dual, there are an equal number 
of points and lines in the configuration. Furthermore, it is self-polarized with 
respect to ̊a focal point
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Figure 10.8: Two imaginary punts

and circle points. There are two circles associated with the circle points, and two 
conic sections associated with the two lines through the focal point. The theorem 
turns out t̊o have a number of properties. We will make an initial observation that 
shows a specific property, before we look at̊more general variant.
296. We allow one of the cone sections to expand so that it eventually becomes a 
circle. This circle will then have the common focal point as its center. The 
circumscribed circle will coincide with this circle, and we have the following.

Figure 112. Given a conic section, and a circle with the same center circumscribes 
this. Another circle has its center in one of the focal points of the conic section and 
a tangent to this circle where it intersects the first will also  ̊be tangent to the conic 
section.

From the theorem f  ẘe immediately get the envelope direction, because we 
realize that the tangents must b̊e perpendicular to lines from the focal point to the tangent 
point.
297. We also  å come to the envelope law by å establishing another variant. We 
let n å one of the conic sections become narrower and narrower, and as it 
collapses it becomes a line segment, of which only the endpoints are significant. 
We then f  ̊a r  the following conditions:

Figure 113. Given a conic section, a circle that circumscribes it, and two tangents 
to it. A circle through the common point of the tangents, and through two of the 
intersections between these and the circle, will also  å g å through the focal point of 
the conic section.

This is a simple and striking theorem. What is t̊o note again is that  t̊he focal 
point in this case cannot be resolved into a circle because it is formed by two 
lines from separate conic sections.
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Figure 10.9: Circle through focal point

Figure 10.10: Peripheral angle statement

298. The theorem provides a generalization of the construction åbove because it 
provides a specific metric theorem:

Metric law 17. Given a conic section circumscribed by a circle. From a point on ̊the 
periphery we draw a tangent, and a line through a focal point. W  ̊ h e n  we move 
the point, the size of the angle will be the same (Fig.10.10)

W  ̊ h e n  we study the figure, we see that the lines from A and B are both 
tangents to c, and that they g  ̊ a r  through the focal point. At the same time, two 
lines p ̊a meet the circle t, and here the peripheral angle says that they must ̊be equal in 
size.

299. The theorem will g å over to the parabola theorem over n  ˚a r  the conic 
section becomes a parabola. Then the enclosing circles will become a line. 
Another variant is w h e n  t̊he second circle becomes a line. This occurs n  ˚w h 
e n the two tangents to the conic section become parallel, and the circle m å g å 
passes through a point at infinity.
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Figure 114. Given a conic section, a circle that circumscribes it, and two parallel 
tangents to the conic section. Then a line through two of the intersections between 
the tangents and the circle will also  å g ̊a pass through the focal point.

I f t̊he circumscribed circle has the same center as the conic section, this fact 
will also j̊ustify the envelope theorem.

300. The two tangents can also  ̊ be tangent to the cone intersection where it is 
tangent to the enclosing circle. Then we will ge t  ̊a symmetrical situation, and a circle 
that g o e s  ̊through both focal points.

Figure 115. Given a conic section, an enclosing circle, and a tangent at each of the 
tangent points between the two. A circle through the tangent points, and through 
the point of intersection of the tangents, will then also  å g ̊a through the focal points of 
the conic section.

From this theorem, we can solve several tasks related to conic section normals.

301. Something special also occurs  ̊if the two tangents coincide to form a tan- gent. 
The point between the tangents then becomes the tangent point with the conic 
section. The two points of intersection with the circle merge into one, but if we 
follow the infinitesimal process here we realize that the circle through the points of 
intersection becomes tangent at this point.

Figure 116. Given a conic section, a tangent to it, and a circle that circumscribes it. A 
circle that is tangent to the first circle at a point of intersection between the line 
and the circle, and that g  ̊ a r  through the focal point, will also  ̊a g ̊ a through the 
point where the tangent meets the conic section.

302. The sentences we have seen f  ̊ a r  a particular nuance n  ̊ a r  we have ̊to do 
with hyperbolae, and the tangents are the asymptotes. We f  ̊ a r  then several 
sentences that give properties of the hyperbola and its asymptotes.

Figure 117. Given a hyperbola and its asymptotes, and a circle that doubles the 
hyperbola. A circle through the center of the hyperbola, and through two of the 
points of intersection with the asymptotes, will also  ̊a g  ̊pass through a focal point of 
the hyperbola.

Figure 118. Given a hyperbola, its asymptotes, and a circle centered at a focal 
point tangent to the asymptotes. Another circle centered on the center of the 
hyperbola that p a s s e s  ̊through the tangent points will tangent the hyperbola.
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Figure 10.11: Hyperbolic circles

10.6 Imaginary tangent
303. Several relationships are revealed w h e n  ̊the conic section and the enclosing circle 
are imaginatively tangent to each other. A connection is also  ̊ evident in the transition 
between the two shapes, especially in the case where the enclosing circle 
tangents the conic section at four points. Then  ̊ the parallel theorem above 126 
first takes o n  a special form.

Figure 119. A circle is quadruple tangent to a conic section. Lines through the tan 
miter point and through the focal points intersect the circles at two points, and the line 
through these points is tangent to the conic section.

If ̊ we continue f ̊ we have imaginary tangent, and parallel sentences can n ̊a be used 
to ̊a find the focal point in the conic sections.
304. W  ˚h e n  the imaginary tangent conic section remains in the center of the 
enclosing circle, then this itself becomes a circle. Thus ˚arises  the following 
theorem:

Figure 120. Given two concentric circles, and two tangents to the inner circle. A circle 
through two of the tangents' intersection points with the outer circle that g ˚ 
passes through the intersection of the tangents will also å g p̊ass through the 
center of the circles.

305. The theorem above shows the theorem about broken chord:

Metric law 18. Given a circle, two points A and B p å the arc of the circle, and a third 
point C p å the arc connected by chords from A and B. From the point M midway 
between A and B, a normal is joined to F, and this will halve the distance from A to B 
via C.
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Figure 10.12: Kinked chord

We realize this from the geometric relationship above by ̊studying the tan genes.



Chapter 11 

Equilibrium

In the last family of theorems, we have an equilibrium between circle points 
and focal points, or between the infinitely large circle and the infinitesimally small 
circle, which are nevertheless connected to each other. This is already expressed 
in a certain number of theorems which are to some extent astonishing. One is 
given thus: Given a parabola and three tangents to it. A circle circumscribing the 
parabola will also  ̊a g̊ a pass through the focal point of the parabola. And we have 
the construction. Given a circle and a point inside it. Lines are drawn through the 
point, and normals are erected where the lines meet the circle. The normals then enclose 
an ellipse that touches the circle and has the point as its focal point. The peculiar thing 
about these theorems is that they do not arise  ̊ by a circle becoming infinitely 
small, and by a circle becoming infinitely large. It seems that the focal point is formed 
by two imaginary lines where the two lines come from separate conic sections. 
And likewise with the points, each of the focal points originates from its own 
conic section. We see this in a classic transition from a real to an imaginary 
image. This transition is from an image that is also known  ̊ as a special case of 
Poncelst's theorem. Given a conic section with two triangles inscribed. Then the 
triangles will also  ̊a inscribe a conic section. The theorem also implies  ̊ a :  Given a 
conic section that inscribes a triangle where the triangle in turn inscribes a conic 
section. Then there is a linear set of triangles that can be placed between the two conic 
sections. 1 These considerations can be continued somewhat, but we noẘ a turn 
our attention to some circle theorems of a slightly different nature. the theorems ̊
are in many ways similar ̊to those we have seen, it turns out that they do not come out 
of the basic circle theorem, but that we must̊ a g  ̊take a slightly different path.

1This is called Poncelet's theorem, but for all polygons; if a polygon lies between two conic 
sections, then there is an infinite number of conic sections between them.

159
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11.1 Two-circle focal point sentences
In the considerations we have just made, we have seen that we can make 
movements from circles to focal points. The reverse movements are also  ̊often found 
when  ̊we have a relationship that involves a focal point, then we expect that 
this can be resolved into a double-aspect circle. Surprisingly, ˚this does not 
always turn out to be possible, and one theorem where this is not the case is a well-
known theorem related to the parabola.
Figure 121. Given a parabola and a triangle that circumscribes it. A circle that 
circumscribes the triangle will then g ̊a through the focal point of the parabola.

This theorem cannot be generalized so that the focal point becomes a circle that is 
double tangent to the parabola, and we will see the reason for this in a moment.

It turns out that the theorem can be traced back to the double triangle theorem 
from the previous chapter.2Here we had the fact that n  ̊ a r  two triangles are 
inscribed in a conic section, then they also  ̊rewrite a conic section. We let n ̊a 
two points p ̊ a the same triangle be the circle points. This causes the 
circumscribed conic section to become a circle. The line through the circle 
points m ̊a be the line at infinity, and the inner conic section that is tangent to 
this line m ̊a then be a parabola. The two tangents through the circle points form 
the focal point of this parabola because they are tangents to it. The other triangle 
is not affected by all this and it circumscribes the parabola. The circle rewrites this , 
and also  ̊ g o e s  ̊through the sixth point, which is the focal point of the parabola.

Here we have  ̊ two theorems that have the same structure, but which behave 
completely differently w h e n  ̊the circle points are taken into account. We realize n ̊a 
also  ̊a the reason why the focal point cannot be a circle; this is because the two 
lines that form the focal point come from different conic sections. We saw ̊a how 
two opposite  ̊ sides of the hexagon came from a conic section; we must ̊ a 
therefore have a line from each triangle's triangle to ̊a form the conic section, 
here two lines in the same triangle form the focal point.

This consideration leads us to ̊ask for the most general configuration that allows a 
line from each conic section to form a focal point. It turns out ̊to be a variant where 
we from the main theorem have let two conic sections become two pairs of points, 
and two others become two pairs of lines, so that the configuration is self-dual.
Figure 122. Given a conic section that intersects another at four points, and a third 
that double tangents this. Through each of the four intersection points

2The observation we are making here was made in some book that we cannot remember.
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we add a tangent to the double-tangent conic section. There is then a conic section that 
doubles the other conic section and the four lines.

We see here that two of the conic sections have four common points, and that 
the other two have four common lines.

We let n ̊a two of the points originating from each conic section become the circle 
points. Both conic sections through these will then be circles, while the other two 
conic sections will  ˚b e  the common focal point of the two lines through the circle 
points. We can then set up the theorem:

Figure 123. Given two conic sections with a common focal point, and a circle that 
doubles each of these. These are laid out so that a common tangent to the conic 
sections, g ̊ a r through an intersection point of the circles. The other joint tangent g ̊  
will then pass through the other intersection between the circles.

We note that this theorem is completely dual. Furthermore, we can consider 
that we cannot let the two lines be a conic section; we do not  h̊ave in general that 
there is a conic section that double tangents each of the two conic sections, and g o 
e s  t̊hrough the intersections of the circles.

This theorem turns out  ̊to have a number of properties. We will make an initial assessment 
that shows a specific property, before we look at̊  a more general variant.

We allow one of the cone sections to expand so that it eventually becomes a circle. 
This circle will then have the common focal point as its center. The circumscribed 
circle will coincide with this circle, and we have the following.

Figure 124. Given a conic section, and a circle with the same center circumscribes 
this. Another circle has its center at one of the focal points of the conic section, and 
a tangent to this circle where it intersects the first will also  ̊be tangent to the conic 
section.

From this theorem,  we  i̊mmediately see the envelope direction, because we 
realize that the tangents must b̊e perpendicular to lines from the focal point to the tan 
point.

We also  å come to this theorem by å establishing another variant. We let n å one 
of the conic sections become narrower and narrower, and as it collapses it 
becomes a line segment, of which only the endpoints are significant. We then f  ˚a r  the 
following conditions:

Figure 125. Given a conic section, a circle that circumscribes it, and two tangents 
to it. A circle through the common point of the tangents, and through two of the
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Figure 11.1: Parabola and focal point

The intersections between these and the circle will also  åg ̊a through the focal point the 
conic section.

This is a simple and striking theorem. What is t̊o note again is that  t̊he focal 
point in this case cannot be resolved into a circle because it is formed by two lines 
from separate conic sections.

This will g ̊ a over to the parabola statement above n  ̊ a r  the conic section 
becomes a parabola. Then the enclosing circles will become a line. Another 
variant is w h e n  ̊the second circle becomes a line. This occurs n  ̊ w h e n  the two 
tangents to the conic section become parallel, and the circle m å g ̊a passes through 
a point at infinity.

Figure 126. Given a conic section, a circle that circumscribes it, and two parallel 
tangents to the conic section. Then a line through two of the intersections between 
the tangents and the circle will also  å g ̊a pass through the focal point.

I f ˚the circumscribed circle has the same center as the conic section, this fact 
will also j̊ustify the envelope theorem.

The two tangents can also ̊ be tangent to the cone intersection where it is tangent to 
the enclosing circle. Then we will get ̊ a symmetrical situation, and a circle that g o e s ̊  
through both focal points.

Figure 127. Given a conic section, an enclosing circle, and a tangent at each of the 
tangent points between the two. A circle through the tangent points, and
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Figure 11.2: Output for the focal point circle theorem

Figure 11.3: Circle through focal point
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through the point of intersection of the tangents, will then also å  g ̊a through the focal 
points of the conic section.

From this theorem, we can solve several tasks related to conic section normals.

Something special also occurs  ̊if the two tangents merge into one tangent. The point 
between the tangents then becomes the tangent point with the conic section. The 
two points of intersection with the circle merge into one, but if we follow the 
infinitesimal process here we realize that the circle through the points of 
intersection becomes tangent at this point.

Figure 128. Given a conic section, a tangent to it, and a circle that circumscribes it. A 
circle that is tangent to the first circle at a point of intersection between the line 
and the circle, and that g  ̊ a r  through the focal point, will also  ̊a g ̊ a through the 
point where the tangent meets the conic section.

The sentences we have seen f  ̊ a r  a particular nuance n  ̊ a r  we have ̊to do 
with hyperbolae, and the tangents are the asymptotes. We f  ̊ a r  then several 
sentences that give properties of the hyperbola and its asymptotes.

Figure 129. Given a hyperbola and its asymptotes, and a circle that doubles the 
hyperbola. A circle through the center of the hyperbola, and through two of the 
points of intersection with the asymptotes, will also  ̊a g  ̊pass through a focal point of 
the hyperbola.

Figure 130. Given a hyperbola, its asymptotes, and a circle centered at a focal 
point tangent to the asymptotes. Another circle centered at the center of the 
hyperbola that p a s s e s  ̊through the tangent points will tangent the hyperbola.

11.2 Imaginary tangent
Several relationships are revealed w h e n  ̊ the conic section and the enclosing 
circle are imaginarily tangent to each other. A connection is also  ̊evident in the 
transition between the two shapes, especially in the case where the enclosing circle is 
tangent to the conic section at four points. Then  ̊ the parallel theorem above 126 first 
takes  o n  a special form.

Figure 131. A circle is quadruple tangent to a conic section. Lines through the tan 
miter point and through the focal points intersect the circles at two points, and the 
line through these points is tangent to the conic section.
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If ̊ we continue f ̊ we have imaginary tangent, and parallel sentences can n ̊a be used 
to ̊a find the focal point in the conic sections.

W  ˚ h e n  the imaginary tangent conic section remains in the center of the 
enclosing circle, then this itself becomes a circle. Thus ˚arises the following 
theorem:

Figure 132. Given two concentric circles, and two tangents to the inner circle. A circle 
through two of the tangents' intersection points with the outer circle that g  p̊asses 
through the intersection of the tangents will also  å g  p̊ass through the center 
of the circles.

This can also b̊e further specialized so that the two keys coincide.

We have thus come to a conclusion n r̊egarding the main considerations.

11.3 Tasks
6. Cracked cork
Given a circle and three points A, C and B p ̊a the periphery, and line segments AC 
and BC. From the midpoint p ̊of the arc between A and B we drop a normal, and 
have the point D where it hits. Show that the distances along the lines from A to D 
and from B to D are the same length, even though in one case we have a broken 
line.

We apply the theorem above. Figure 11.4 shows that the broken chord ACD is 
as long as the tangent AE, which in turn is as long as BD.

7. Given a conic section at its major axis and focal points, and a tangent to the
conic section. Find the point where the tangent touches the conic section.

8. Given a circle, and two points equidistant from the center. Find the shortest
path between the points via the periphery of the circle.

9. Construct the focal point of a parabola tangent to four lines.

10. A parabola is given by a focal point and three tangents. Find one of the
parabola's tangent points with the tangents.

11. Construct a parabola that is tangent to four lines.
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Figure 11.4: Theorem broken chord

We find the focal point by ̊ finding the intersection of two circles that 
circumscribe two triangles. We can find new lines by ̊a adding circles that g  ̊ a r  
through the focal point and the intersection of two tangents. The new tangents are 
found between the other intersections. Points on̊ a the tangents are found by ̊ a 
letting circles intersect tangents where others intersect .focal point

12. A hyperbola and its asymptotes are given. Find the focal points of the 
hyperbola.
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Appendix
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Chapter 12 

Expansions

1. The basic type can be expanded, or used  ̊ in conjunction with several other 
theorems, and we will look at̊ some of these

12.1 Extension to the room
2. The type can immediately be extended to space. We then have ̊ to run with 
second degree curves in space, or quadrics as they are also  ̊ called. These are the 
basic elements, but the basic connection is tagging along a spline. I n  o t h e r  words  ̊a 
two quadrics touch each other continuously along a conic section, and this conic 
section will also  ̊a lie in a plane.

3. Unlike conic sections, a phenomenon already occurs at the connection between four 
squares.

Proposition 1. Given a square, and two others that are tangent to it. Then there is a 
linear set of squares that touch these two.

The same applies to the conic sections, but this is complicated since the conic 
sections have five degrees of freedom. There it will always be the case that two 
conic sections have a linear number of conic sections that affect them both, but this 
is not the case here. In general, two arbitrary squares will not touch many others, 
but if they have a square in common, then they will have a linear set in common.

12.2 Degeneration of squares
4. A square that is tangent to two other passages̊ ar p̊ a same m  ̊ a t e  as the wedge-
shaped sections has four special branches, two zero points s̊ a and si and two 
poles. In the
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In one case, the square becomes a plane, with a conic section as a boundary, in the 
other case a point, with a cone through it.

5. This also i̊mplies that two squares contained in a third also ˚has two cones in 
common, and two common planes, with cone sections in.

6. In space, one can also å p ̊ a another m å t e continuously follow the transition 
from real to imaginary tangent. W h̊en we cut two surfaces that are connected to 
each other through their contact conic sections, the image will be two conic sections that 
double-tangent each other. (In particular, an entire conic section image will emerge w ˚ h 
e n the entire constellation is cut.) If we let n ̊ a section plane rotate so that it still 
intersects the conic sections, but not the tangent curve, then the two conic sections 
will touch each other imaginatively.

7. We can make this observation with a cone and a sphere that are tangent to each 
other in a circle. The image of this in a plane that intersects the sphere, cone and circle 
will be a circle that double tangents a conic section. W ˚h e n the plane no longer 
intersects the circle, but still intersects the sphere and the cone, the image will be a 
circle that d-tangles the conic section imaginatively. W h e n ˚the plane is tangent to the 
sphere, the circle will be infinitely small, but it will still be d-tangent to the conic 
section, and will thus b̊e the focal point of the conic section. This brings us back to 
the initial definition of the focal point based on the conic section.

8. This means that two squares tangent to a common square will intersect along 
two conic sections, while the two generally intersect along a fourth degree curve in 
space.

12.3 Imaginary circle Brennpunkt and brennsirkel
9. In the plane, the circle can be seen p̊ a as a conic section p a s s i n g  ̊through
the two imaginary circle points at infinity. W h e n  ̊ we apply similar considerations
in space, we find that spheres in space can be seen p̊ a as squares that g  ̊ a r
through an imaginary circle at infinity.

10. Munge's theorem and the diagonal triangle theorem apply immediately here.

12.4 Double cube
11. Another generalization that is central is ̊ to expand the structure. The structure
of the type is the octahedron. This number is a power of two, and can also  ̊ be
written as a Pascal series, i.e. it is the sum of the numbers 1, 3, 3, 1. We describe
the type in this order. First a primary conic section, then three secondary ones, then̊ 
three tertiary ones, and finally the final or quaternary one. This can be
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We expand by starting with a conic section and allowing four to intersect it. 
Between the four, we find six that are tangent to two and two. Then̊ we find 
four that are tangent to three and three of the previous ones, and finally one 
that is tangent to the four. This is a double cube structure that has 16 conic 
sections that all touch 4 others.

12. This also  ̊sits in space, and here we can form a clear picture of the case. We let 
the imaginary circle at infinity be the primary square. Through this g  ̊ a r  four 
spheres, between the four spheres we find four planes. Then̊ three and three planes will 
meet in four lines, and these four lines will go̊ through the same point.
13. Å  f̊ a such forward in the plane is not always easy because the end element
often becomes imaginary. A variant where the element appears is when  ̊ we start 
with four circles, find the six double keys between them, then̊ the four conic sections 
linked to three and three. These four conic sections will then all touch a fifth conic 
section.
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Chapter 13 Tasks

The conic section doctrine is associated with many problems, some of a 
complicated nature. The master in ̊ this f ie ld  ̊ was Jacob Steier, who presented 
and solved countless problems of various kinds.

In this presentation, we will not t̊ackle ̊all types of problems, but will limit ourselves ̊  
in two ways. One is that we shall remain within the morphological area ̊ in which 
we work when applying the method; that is to say, when solving problems we 
will use the theorems that emerge from the morphological investigations. We do 
not draw on theories outside this area ̊ to ̊find a solution. In the beginning of the 
assignments we will still use the elementary circle constructions that ̊a find normals, 
parallel lines and other things before these appear as theorems. Eventually, 
however, we will see that ̊ these simple constructions also emerge from the topic.

The second limitation concerns the choice of assignments. In general, we will 
not outline tasks out of the blue ̊ a . On ̊the one hand, there will be simple classroom 
tasks that are easy to understand that we also ̊ a extend to more general images. On ̊  
the other hand, the assignments will be of such a nature that we can make sense of 
the various images that appear.

13.1 Desargues theorem and parallelism
N  ̊f we don't have a metric, parallelism is justified in relation to given parallelism. If 
two parallel lines are given, we can find parallels to this one, and if two pairs of 
parallel lines are given, we can find parallel lines to all lines.

13. Given two parallel lines, and a point beyond them. Find a parallel to the lines
through the point.

14. Given two pairs of parallel lines, and a single line that is not parallel to these.
Find a parallel to this line.
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15. Given two pairs of parallel lines, a single line that is not parallel to these and 
a point that does not lie on ̊either line. Find a parallel to the single line through the 
point.

Another aspect of Desargues' theorem is that each point can be a perspective 
point. Each new point we choose results in two new triangles, and a new Desargues 
line.

16. Given a Descartes configuration. Starting from another point as the 
perspective point, find the perspective triangles, and the Desargues line. This can 
be repeated with other points.

13.2 Pascal's theorem
Using Pascal's theorem, we can construct a number of basic elements. The first 
is that once  ̊we have given five points to ̊a conic section, we can find as ̊many new 
ones as we like.

17. Given five points on̊ a conic section. Find a new point on̊ the conic section.

18. Given a conic section at five points, and a line through one of the points. Find
the second intersection of this line with the conic section.

19. Given a conic section through five points, and a line through two of these.
Through one of the other intersections we draw a parallel to the line. Find the line's
second point of intersection with the conic section.

20. Given a conic section at five points. Find a diameter for the conic section.

21. Given a conic section at five points. Find the center of the conic section.

22. Given a conic section at five points. Find a tangent at one of the points.

23. Given a pascal configuration with given point order (1,2,3,4,5,6) and find the
pascal line. Then cyclically permute the first three points so that we find  ̊the point
orders (3,1,2,4,5,6) and (2,3,1,4,5,6). Find the Pascal lines also  ̊ here. What is the
result?

13.3 loo
The first type of construction we have ̊to deal with is the formation of curves. 
From Pascal's theorem we have that we can find as̊ many points as we want w h e n  ̊
five are given. W h e n  ̊ this is in̊ place, we can consider ̊ to have found a conic 
section w h e n  ̊we have a point locus.
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13.4 Brianchon's theorem
By Brianchon's theorem, we can construct the dual images of Pascal. However, the 
parabola is special here because it is tangent to the line at infinity, which provides 
more tasks.

24. Given four tangents to a parabola. Find a fifth tangent.

25. Given four tangents to a parabola. Find a line parallel to the axis.

26. Given a conic section and a line outside this. Find a diameter parallel to the 
conic section.

27. Given a conic section at five points. Find a diameter of the conic section 
parallel to a given line.

28. Given a hyperbola by the two asymptotes and a line. Find the point of 
tangency of the hyperbola with the line. Where is the point in relation to the line's 
intersection with the asymptotes?

29. A hyperbola is given by the two asymptotes and a line. Find another tangent to 
the hyperbola.

13.5 Perseverance
Here we look at̊ a construction method  ̊.

30. Given a circle, and a diameter. An ellipse has the same axis, and we have
given a point p̊ to this. Find another point p̊ a the ellipse.

31. Given a circle, and a diameter. An ellipse has the same axis, and it is tangent
to a given line. Find the tangent point between the line and the ellipse.

32. Given two conic sections that intersect at two points. Find a common point for
the two.

33. Given two conic sections that intersect at four points. Construct their four joint
tangents.

34. Given two conic sections that meet at two points. Construct their inner trap
point.

35. Given two conic sections in perspective that do not intersect. Construct their
perspective lines.
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13.6 Tangency and cutting
In many of the conic section geometry tasks, it is a point ̊ to be able to construct 
intersection points and tangents to conic sections w h e n  ̊five points or five lines 
are given. In a geometry program, we can find the conic section through the five 
points, and then find the intersection points. Here, however, we will see ̊ what is 
possible in principle with a circle and ruler. O n c e  ̊this has been done, you can use 
the possibilities offered by the various tools.

36. Given a conic section through five points, and a line through two of these. 
Through one of the other intersections we draw a parallel to the line. Find the line's 
second point of intersection with the conic section.

37. Given three points p̊ a conic section and a circle through the three points. Find 
the fourth intersection between the circle and the conic section.

38. Given a conic section at five points and a line. Find the intersection points 
between the conic section and the line.

39. Given a conic section at five points, and a circle through two of the points. 
Find the other intersections between the circle and the conic section.

13.7 Appolonisu constructions
One class of constructions are the s  ̊ akla te  appolonuius constructions. Here, the 
task is ̊ to construct circles that tanerer three given circles. N  ̊ a r  the circles can 
assume their extreme values.

40. Construct the diagonal 
between two circles that do 
not intersect.

41. One circle is inside 
another. Construct the 
diagonal between them.

42. Construct the outer joint 
bars into two circles.

43. One circle is inside 
another. Construct the 
diagonal between them.

44. Construct the diagonal between two circles that do not .

45. One circle lies inside another. Construct the diagonal between them.

46. Construct the common points between two circles that do not .
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47. Construct the outer joint bars into two circles.

48. Find the outer common line of two circles.

49. Given two circles and a point on̊ a one of the circles. Construct a circle that is 
tangent to one of the circles in the point, and that is also  ̊a tangent to the other.

50. Construct one of the inner common lines of two circles.

51. Construct a circle that p a s s e s  ̊through three given points.

52. Construct one of the circles tangent to three given lines.

53. Construct one of the circles that p a s s e s  ̊through two given points and is 
tangent to a given line.

54. Construct one of the circles tangent to two lines and g  ̊ a r  through a given 
point.

55. Given a circle and two points. Find the circles that g o  ̊through the points and 
are tangent to the circle.

56. Given a circle and two lines. Find the circles that are tangent to the lines and the circle.

13.8 General constructions
Here, we extend the Appolonius construct to ̊apply in general.

57. A conic section g  ̊passes through four points and is tangent to a straight line. 
Find the point of tangency with the line.

58. A conic section is tangent to four lines and p a s s e s  ̊ through a given point. 
Find the tangent at the point.

59. A conic section  ̊passes through three points and is tangent to two lines. Find 
the tangent points with the lines.

60. A conic section is tangent to three lines and p a s s e s  ̊through two points. Find 
the tan genes in the points.

61. Given a conic section and two points. A conic section g  ̊ passes through two 
given points p̊ a the conic section, through the two points, and is tangent to the conic 
section. Find the tangent point.

62. Given a conic section and two lines. A conic section is tangent to the lines, 
tangent to the conic section, and  ̊passes through two points on̊ the periphery. Find the 
tangent point between the two conic sections.

63. Given a conic section, two tangents to this, and two lines. Another conic 
section is tangent to the four lines and the conic section. Find the tangent point 
between the two.
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13.9 focal point
A conic section with a given focal point is dual to a circle. We can therefore find 
the elementary circle constructions here, and also  ̊ the Appollonius constructions. In 
these exercises, we can imagine the conic sections as given, so that we can find the 
intersection points between these and a line immediately.

64. Given a conic section. Find the focal point of this.

65. Find the directrix of a given conic section with a focal point.

66. Given a conic section at its one focal point, the directrix, and one more
point p ̊at the periphery. Find another point p ̊at the periphery.

67. Given two conic sections with a common focal point that do not . Find the diagonals 
between them.

68. Given two conic sections with a common focal point. Find the common point between 
them.

69. Given a conic section at its focal point and three points on ̊its periphery. Find
the directrix of the conic section.

70. Given a focal point and three lines. Find the conic section with this focal point 
tangent to the lines.

13.10 Duality
71. Tangents from point to conic section
Given a conic section, and a point outside the conic section. Find the tangents from
the point to the conic section.

We draw two lines from the point above the conic section, and find lines 
through the intersection points. These meet at two points on̊ the pole, and where the 
pole intersects the conic section we have the tangent points. We can noẘ a draw the 
tangents.

72. Show the theorem:
Given a hyperbola and its asymptotes, and two tangents to the hyperbola. The intersection 
of the tangents, the center of the hyperbola, and the intersection of two parallels with the 
asymptotes through intersections with them will be
p ̊has the same line.

73. Cracked cork
Given a circle and three points A, C and B p ̊ a the periphery, and line segments AC
and BC. From the midpoint p ̊ of the arc between A and B we drop a normal, and have the 
point D where it hits. Show that the distances along the lines from A to D
and from B to D are the same length, even though in one case we have a broken
line.
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74. Given a conic section at its major axis and focal points, and a tangent to the 
conic section. Find the point where the tangent touches the conic section.

75. Given a circle, and two points equidistant from the center. Find the shortest 
path between the points via the periphery of the circle.

76. Construct the focal point of a parabola tangent to four lines.

77. A parabola is given by a focal point and three tangents. Find one of the 
parabola's tangent points with the tangents.

78. Construct a parabola that is tangent to four lines.

We find the focal point by ̊ a finding the intersection of two circles that 
circumscribe two triangles. We can find new lines by ̊a adding circles that g  ̊ a r  
through the focal point and the intersection of two tangents. The new tangents are 
found between the other intersections. Points on̊ a the tangents are found by ̊ a 
letting circles intersect tangents where others intersect .focal point

79. Construct a circle tangent to a given conic section and a given line.

80. Construct a circle tangent to a given conic section and a g  ̊ a r  through a given 
point inside the conic section.

81. Given a conic section and a point p̊ on the axis. Find the normal from the 
point p̊ of the conic section.

13.11 To brennpunkt
82. Given a conic section at two focal points and a point p̊ at the periphery. Find 
by construction a new point p̊ at the periphery.

83. Given two circles. A parabola is tangent to both of these. Construct a point p̊ at 
the periphery of the parabola.

13.12 firing compass
84. Given a conic section and a point outside it. Find a circle that encloses the 
conic section and g  ̊ a r  through the point.

Given a conic section and the vertical axis and a point p̊ a this. Find the normals 
from the point to the conic section.
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85. A hyperbola and its asymptotes are given. Find the focal points of the 
hyperbola.

86. Given a conic section at two focal points and a line. Find the tangent point 
with the line.

87. A conic section is given by a focal point and three tangents. Find the conic 
section at ̊to find the second focal point.

88. Given a conic section by a circle, a focal point and a line. Find the tangent 
point between the tangent and the conic section.

89. Given a conic section by a circle and a focal point and a point in addition. 
Find the tangents in the point. How many solutions do we have?

90. Given a circle and two points inside the circle that are equidistant from the 
periphery. Find the fastest path from one point to the other via the periphery.

91. Given a parabola, the axis and a point p̊ a this. Find the normals from the 
point p̊ a the parabola.

92. Given a conic section by a circle and three lines. Find a focal point for the 
conic section.

13.13 Proposed solutions
(22)We draw a five-pointed star between the points, and where one diagonal 
intersects the line between two intersection points, we draw the line to the fifth 
point. This is a tangent.

(18) We use Pascal's theorem and let the searched point be the sixth point in a 
Pascal configuration. We find the Pascal line by two pairs of lines, and the third 
Pascal point is found where this intersects the given line. W  ̊ h e n  we have this 
point, we can draw the last line in the Pascal hexagon, and we find the searched 
point.



Chapter 14 

Images

Here is a systematic review of the images.

14.1 The starting point
1. Desargues theorem
Given two triangles in perspective. Then matching sides of the triangle will meet in 
three points that all lie on̊line. We call this line the Desargues line, and we can call the 
perspective point the Desargues point in the configuration.

2. Desargues' theorem N ˚a r two triangles are point perspective, then they are 
also å line perspective.

3. Given two triangles with vertices p ̊ a three parallel lines. Then two and two 
matching lines in the triangle will meet at three points p ̊ a the same line.

4. I f t̊wo pairs of lines in a hexagon inscribed in a circle are parallel, then ˚ 
the third pair will also be parallel.

5. Pascla's theorem Given a hexagon inscribed in a conic section. Then opposite 
s̊ides of the hexagon will meet at three points that all lie on ̊ the same line.

6. Given two lines, and three points on ̊ each of the lines. We form intersections of 
lines between between two and two points on ̊ each line, and the intersection points 
are on ̊ the same line.

7. Given a hexagon inscribed in a conic section, where two opposite s̊ides are 
parallel. Then the Pascal line of will be parallel to these lines.

8. I f t̊wo pairs of opposite s̊ides of a hexagon inscribed in a conic section are 
parallel, then t̊he third pair of opposite s̊ides will also be parallel.
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9. Given a pentagon inscribed in a conic section. Then we want a tangent at a point,
a line in the pentagon, and a line through two intersections of the other four lines, g̊ 
a through the same point.
10. McLaren's statement
Given a square inscribed in a conic section. Then opposite̊ sides, and opposite  ̊tangents
will meet at points that all lie on̊ the same line.
11. McLaren's second theoremGiven a square inscribed in a conic section, and
tangents at two neighboring points in the square. Sides of the square and tangents
meet at two points, the line between the points of tangency and the  ̊opposite side of
a point, and these points lie on̊ the same line.
12. Given a triangle inscribed in a conic section. Then one side of the triangle
will meet the tangents in opposite  ̊ corners at three points that lie on̊ the same
line.
13. Given a hyperbola and its asymptotes, and two points p̊ a its periphery p̊ a
either side of the center. Parallels with the asymptotes are drawn through the points,
and the line through their intersections will also  ̊a g̊ a pass through the center.
14. Given a hyperbola and its asymptotes ( a and b), and two points (P and Q) p̊ 
a the periphery. A line through P parallel to one asymptote, and a line through Q
parallel to the other, intersects these at two points, and the line through these is then
parallel to the line PQ.
15. Given an ellipse, two tangents to it, and two points on̊ the periphery such that the
line through them is parallel to the line through the tangent points. We draw lines
between the tangent points and points p̊ a the periphery, and where these meet the
tangent points are formed, and lines through these are then parallel to the line
through the tangent points.
16. Given a conic section, and two parallel tangents to it. From two points on̊ the
periphery of the conic section, we draw lines through the tangent points, and these
will intersect at two more points. The line through these points is then parallel to
the tangents.
17. Given a parabola, a tangent to it, and two points on̊ the periphery. From the
points p̊ a the periphery, we draw lines to the tangent point, and lines parallel to the
parabola. These meet at two points, and the line through these points is parallel to
the tangent.

14.2 Duality
18. Brianchon's theorem
Given a conic section and a hexagon that circumscribes this. The three main iagons
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The links in the hexagon will then meet at the same point.
Brianchon's theorem appears, if possible, even simpler in expression than Pascal's 

theorem, and many transformation possibilities are also  ̊associated with it, and we will 
look at̊ a few of these before we later look at̊ a the duality principle from another 
angle.
19. Given a conic section circumscribed by a pentagon. We find two diagonals 
in the pentagon. Å line through the fifth corner of the pentagon that p a s s e s  ̊ through 
the opposite ̊ tangent point will also pass̊ through the intersection point between the 
diagonals.
20. Dual Mclaren
Given a conic section, and a square that circumscribes this. A line between two of 
the tangent points will then g̊ a through the point where the diagonals of the square 
meet.
21. Given a conic section m, and a square that circumscribes this. Two lines 
between tag ring points and corners in the square will meet on̊ a diagonal in the 
square.
22. Given a triangle, and a conic inscribed in it. The lines between the corners of 
the triangle and the tangent points will meet at the same point.
23. Given a parabola, two tangents to it, and the line between the tangent points. 
We find parallels to the tangents that meet on̊ the transversal, and where these meet 
the tangents we draw a line. This is also t̊angent to the parabola.
24. Given a hyperbola, its asymptotes and two tangents. The lines through the 
points where the tangents meet the asymptotes are then parallel.
25. Given a parabola, three tangents to it, and a diameter of the parabola through 
one of the tangent points between the parabola and one of the tangents. Where this 
intersects the other lines, we draw parallels to the third, and these will meet at̊ the 
diameter.
26. Given a pole and a polar. We let a line g̊ a through the point. The pole of 
this line then lies p̊ a the polar of the line.
27. Given a conic section, a point, the two tangents from the point to the conic 
section and the polar. We add a point ̊to the polar, subtract tangents from this, and 
find the polar. This will then go  ̊through the original point.
28. Given a conic section, a point outside the conic section, the two tangents, and 
the polar of the point. We draw two lines through the pole, and these intersect the 
conic section at four points. Lines through these points will then meet at̊ the pole.
29. Given a conic section, a line cutting across this, the two tangents and the pole 
of the line. At̊ the pole we add two points, and from these four tangents to the conic 
section. The tangents form common points, and lines through these will g̊ a through 
the pole of the line.



Register

Brianchon's theorem, 79 

Imaginary
-circle points, 79

Continuity principle, 25

Poncelet, 25, 79

Salmon, 80
-Salmon's theorem, 79 

the circle points, 79 
Steering line, 46
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