Geometrien i nyere tid har vist at det Euklidiske rommet er et spesialtilfelle av et mer generelt rom. Det første trinn i forståelsen av dette er oppdagelsen av at den såkalte linjen i uendelig en forbundet med de strukturer vi ser omkring oss. De krystallinske former, og de regulære former i plante og dyreverdenen kan betraktes på dette vis.
Vi skal her vise en helt vesentlig overgang som i grunnet setter hele geometrien i et nytt perspektiv. Det dreier seg om hvordan men skal forstå sirkler, og i rommet sfærer.
← vis
Ved å zoome kan man nærme seg euklidiske sirkler på den ene siden, og motromssirkler på den annen.
P=(-0.5,0.3)
B=(-0.5,-0.3)
A=(0.7,-0.2)
P=Intersect(Ray(B,A),cs)
Q=Intersect(Ray(A,B),cs)
SetPointStyle(A,1)
SetPointStyle(B,1)
spq=Segment(P,Q)
df=PA/AQ QB/BP
lndf=ln(df)
cka=CKAvstand(A,B)
acab=arccosh(cka)
forhold=lndf/acab
t1=Text("Df = PA/AQ QB/BP = " df,(-1.4,1.3))
t2=Text("Ln(Df) = " lndf,(-1.4,1.15))
t3=Text("Av = "cka,(-1.4,1.0))
t4=Text("Cosh = " acab,(-1.4,0.85))
t5=Text("Forhold = " forhold,(-1.4,0.7))
A=(-0.2,0.1)
B=(0.4,0.1)
S=MidtPunkt(A,B)
si=SirkelP(S,A)
C=Point(si)
SetValue(C,Intersect(si,Ray(S,(0.3,0.4))))
SetPointSize(A,3)
SetPointSize(B,3)
SetPointSize(C,3)
sab=Segment(A,B)
sac=Segment(A,C)
sbc=Segment(C,B)
ab=CKavst(A,B)
ac=CKavst(A,C)
bc=CKavst(C,B)
t1=Text("AB = " + ab,(-1.4,1.3))
t2=Text("AC = " + ac,(-1.4,1.2))
t3=Text("BC = " +bc,(-1.4,1.1))
SetLineThickness(sab,3)
SetLineThickness(sac,3)
SetLineThickness(sbc,3)
SetColor(sab,"#004040")
SetColor(sac,"#004040")
SetColor(sbc,"#004040")
SetColor(si,"#804000")
ic=ab+1
t6=Text("AC + BC = AB +1 = " +ic,(-0.6,1.3),true,true)
SetColor(t6,"#A72E00")
ShowLabel(si,false)
ShowLabel(A,True)
ShowLabel(B,true)
ShowLabel(C,true)
lab=AB
lac=AC
lbc=BC
kab=lab^2
kacb=lac^2+lbc^2
t8=Text("Pyt:\; AB^2 = " +kab,(-1.4,-1.0),true,true)
t9=Text("Pyt:\; AC^2+BC^2 = " +kacb,(-1.4,-1.12),true,true)
SetColor(t8,"#004040")
SetColor(t9,"#004040")
SetColor(t1,"#006040")
SetColor(t2,"#006040")
SetColor(t3,"#006040")
A=(-0.5,-0.1)
A=(-0.5,-0.1)
B=(0.6,0.1)
sab=Segment(A,B)
C=Point(sab)
SetPointSize(A,3)
SetPointSize(B,3)
SetPointSize(C,3)
sac=Segment(A,C)
sbc=Segment(C,B)
ab=CKavst(A,B)
ac=CKavst(A,C)
bc=CKavst(C,B)
t1=Text("c = AB = " + ab,(-1.4,1.3))
t2=Text("b = AC = " + ac,(-1.4,1.2))
t3=Text("a = BC = a = " +bc,(-1.4,1.1))
SetLineThickness(sab,3)
SetLineThickness(sac,3)
SetLineThickness(sbc,3)
SetColor(sab,"#004040")
SetColor(sac,"#004040")
SetColor(sbc,"#004040")
t6=Text("a^2+b^2+c^2 = 2abc+1",(-0.2,1.4),true,true)
t7=Text("\alpha + \beta = \gamma",(-0.2,1.25),true,true)
SetColor(t6,"#A72E00")
ShowLabel(A,True)
ShowLabel(B,true)
ShowLabel(C,true)
lab=AB
lac=AC
lbc=BC
kab=(ab^2-1)^(1/2)
kacb=(ac^2-1)^(1/2)+(bc^2-1)^(1/2)
SetColor(t8,"#006060")
SetColor(t9,"#006060")
SetColor(t1,"#006060")
SetColor(t2,"#006060")
SetColor(t3,"#006060")
arab=arcosh(ab)
arac=arcosh(ac)
arbc=arcosh(bc)
t11=Text("\gamma = " + arab,(-1.4,0.9),true,true)
t12=Text("\beta = " + arac,(-1.4,0.77),true,true)
t13=Text("\alpha = " + arbc,(-1.4,0.64),true,true)
t8=Text("\alpha = acosh \; a = acosh \;" +ab+"\;=\;"+arab ,(-1.4,-1.2),true,true)
r=1.2
P=(0.5,0.5)
cks=CKSirkel(P,r)
ShowLabel(cks,false)
SetColor(cks,"#993456")
SetPointSize(P,3)
po=Polar(P,cs)
Q=Point(po)
SetPointSize(Q,3)
SetLineThickness(po,2)
lcs=CKSirkel(Q,1-r)
SetColor(lcs,"#007834")
R=Point(cks)
SetPointSize(R,3)
ck2=CKSirkel(Intersect(Line(P,R),po),1-r)
SetColor(ck2,"#335599")
ShowLabel(ck2,false)
ShowLabel(lcs,false)
r=1.1
Q=(1.1,0.8)
p1=Polar(Q,cs)
ck1=CKSirkel(Q,-1/3)
SetColor(ck1,"#227711")
A=Intersect(cs,Ray(Point(Polar(Q,cs),0.4),Intersect(Line(Q,(0,0)),Polar(Q,cs))))
B=Intersect(cs,Ray(Intersect(Line(Q,(0,0)),Polar(Q,cs)),Point(Polar(Q,cs),0.4)))
C=Point(ck1)
x1=x(A)
x2=x(B)
x3=x(C)
y1=y(A)
y2=y(B)
y3=y(C)
av=(1-x1 x3 - y1 y3)/(1-x3^2-y3^2)^(1/2)
t1=Text("Pav = " + av,(-1.4,1.3),true)
bv=(1-x2 x3 - y2 y3)/(1-x3^2-y3^2)^(1/2)
t2=Text("Pbv = " + bv,(-1.4,1.2),true)
su=av bv
t3=Text("Produkt = " + su,(-1.4,1.05),true)
s1=Segment(A,C)
s2=Segment(B,C)
P=(0.6,0.5)
C=(0.4,0.4)
si=SirkelP(C,P)
B=Point(si)
SetValue(B,Intersect(Ray(C,(0.4,-0.2)),si))
ta=Polar(B,si)
A=Point(ta)
SetValue(A,Intersect(Polar(B,si),Line((-0.2,0.3),(-0.2,-0.3))))
sp=Segment(A,C)
sq=Segment(B,C)
ab=CKavst(A,B)
ac=CKavst(A,C)
bc=CKavst(C,B)
at=(bc^2-1)^(1/2)
bt=(ac^2-1)^(1/2)
ct=(ab^2-1)^(1/2)
t1=Text("AB = " + ab,(-1.4,1.3),true)
t2=Text("BC = " + bc,(-1.4,1.2),true)
t3=Text("a = " + at,(-1.4,0.9),true)
t8=Text("b = " + bt,(-1.4,0.8),true)
t9=Text("c = " + ct,(-1.4,0.7),true)
t10=Text("AC = " + ac,(-1.4,1.1),true)
t6=Text("AB \cdot BC = AC = " + ac,(-0.3,1.3),true,true)
SetColor(si,"#3322bb")
tta=bt^2-at^2-ct^2
ttb=at^2 ct^2
t15=Text("b^2-a^2-c^2 = " + ttb,(-1.4,-1.1),true,true)
t16=Text("a^2 c^2 = " +tta,(-1.4,-1.25),true,true)